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Abstract 
Although uncertainties exist in spatial data mining, they have not been paid much attention to.  
Uncertainty may have an influence on the confidential level, supportable level, and interesting 
level of spatial data mining.  This paper proposes uncertainty-based spatial data mining.  First, 
the concept is given in the integrated contexts of both uncertainty and spatial data mining.  
The inherent uncertainties that have their own characteristics play an important role in spatial 
data mining.  Second, the external aspects and their internal sources of uncertainty-based 
spatial data mining are given.  Besides the errors, spatial uncertainties further include 
positional uncertainty, attribute uncertainty, topological uncertainty, inaccuracy, 
imprecision/inexactitude, inconsistency, incompleteness, repetition, vagueness, noisy, 
omittance, misinterpretation, misclassification, abnomalities and knowledge uncertainty.  
Given a mathematical interpretation, the internal sources may be randomness, fuzziness, 
blunders, chaos, etc.  To control and reduce uncertainty in an acceptable degree, one is data 
acquisition that highlights the information acquired from the process of data collection and 
data amalgamation, the other is data cognition that emphasizes the knowledge discovered from 
data extraction process and information generalization.  Third, the usable techniques and 
methods that may possibly cope with the uncertainties in spatial data mining are briefly 
overviewed.  For example, GIS data models, analysis of error propagation, probability theory 
and mathematical statistics, extended sets.  The cloud model integrates the randomness and 
fuzziness by using the formalization-computerized language, and it is more appropriate when 
there exist more than one uncertainty at the same time, e.g., randomness and fuzziness.  
Finally, a case study is given on Baota landslide. 
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1 Introduction 
The rapid development of the instruments and infrastructures on Geo-Informatics makes 
spatial data complex, changeable and big, which has been beyond the human ability to analyze 
and interpret.  This bottleneck that human faced with large amounts of spatial data is still short 
of knowledge cannot be resolved by only a single conventional technique respectively, for 
instance, cognitive science, mathematics, artificial intelligence, machine learning, pattern 
recognition, spatial data analysis, or database technique (Li, 1997; Li et al., 2001).  Thus it 
promotes the speedy growth of the novel multidisciplinary field for detecting spatiotemporal 
patterns across multiple data sets that are accumulating, i.e. spatial data mining, or knowledge 



discovery from spatial databases.  As it can extract more generalized or summarized rules, 
spatial data mining may enhance human ability to interpret spatial data and generate useable 
information.  For example, data mining may reveal how the variation in climate affects the 
spatial distribution of land cover in ways that would be extremely difficult to predict with 
traditional statistical approaches.  Now, a growing attention has been paid to spatial data 
mining, which will significantly expand the use of geospatial data in a variety of scientific or 
practical areas (Fayyad et al., 1996; Di, 2001; Ester et al., 2000; Miller, Han, 2001). 
 
There are uncertainties in spatial data, and they may directly or indirectly affect the quality of 
spatial data mining (Han, Kamber, 2001; Wang, 2002).  Spatial data of the database is to 
represent the spatial existence of an object in the infinitely complex world.  But there are 
virtually uncertainties inherent in most of the spatial data capturing and data analyzing due to 
the limitations or constraints of current instruments, technologies, capitals, and human skills.  
The uncertainty is the major component of spatial data quality, which is specified as an 
essential characteristic of data by the Federal Geographic Data Committee's (FGDC) Content 
Standards for Digital Spatial Metadata (Goodchild, 1995).  In the Spatial Data Transfer 
Standard (SDTS), the data quality is further divided into five fundamental components: 
positional accuracy, attribute accuracy, logical consistency, lineage, and completeness 
(Burrough, Frank, 1996).  In the sequence, temporal accuracy, thematic accuracy and currency 
are also added (Shi, Wang, 2001).  Moreover, the uncertainty is an essential part of many 
models of spatial data based decision-making, which has become the subject of a growing 
volume of research and figured prominently in research agendas, e.g., spatial decision-making 
support, intelligent GIS (geographical information system), sustainable resources and 
environments, image interpretation driven by knowledge, robot motion planning, computer 
aided design, RS (remote sensing), GPS (global positioning system), weather prediction, 
transportation management, environmental protection geology, agriculture, biology.  Because 
it works with the spatial database as a surrogate for the real entities in the spatial world, and 
spatial data mining is unable to avoid the uncertainties (Wang, 2002).  If the uncertainties 
hidden in the database have been taken as the input of spatial data mining, and further have not 
been paid attention to, the resulting discovered output might be the wrong knowledge.  In 
consequence, the wrong knowledge may more easily leads to a mistaken decision-making.  
Thus it is necessary to deal with uncertainty so as to make the discovered knowledge aware of 
the level of uncertainty present.  Spatial data cleaning, a data preprocessing phase of spatial 
data mining, has generally focused on the uncertainty aspects of data incompleteness, data 
inaccuracy, data repetition, data inhomogeneity, data inconsistence, and image deformation 
(Wang, Wang, Shi, 2002). 
 
However, the uncertainties in spatial data mining have not been addressed to the same degree 
to spatial data mining itself (Di, 2001; Ester et al., 2000; Wang, 2002; Wang et al, 2003).  First, 
although there have been considerable theories and techniques on either spatial data mining 
(Li et al., 2002) or the uncertainties in spatial data (Shi, Wang, 2001), each effort is focused on 
its own field.  It is strange to find out the integration of spatial data mining and uncertainties 
when dealing with the elements, measurement, modeling, propagation, and cartographic 
portrayal in the literatures.  Second, many efforts on the uncertainties specialize on the general 
autocorrelation and are not oriented to discover knowledge from spatial data sets in the 
uncertainty context, e.g., the spatiotemporal prediction at a particular location at a specific 



moment in time when the given conditions at a known location and at the present time change.  
Third, most techniques on the uncertainty may describe some specific situation.  The common 
users without enough background knowledge may have difficulty in making sense of the exact 
nature of uncertainty that an expert specifies.  For example, probability theory (Arthurs, 1965,) 
pay only attention to randomness, and it is also difficult for the average users to understand the 
probabilistic density function specified by the experts (Haining, 2003).  Fourth, spatial 
uncertainties are strongly weighted towards precise locations and boundaries, requiring 
coordinates or area polygons.  Some commercial GIS software and data vendors argue that 
techniques for dealing with uncertainty have no demand in the marketplace or confuse what is 
otherwise a bullish enthusiasm for the technology (Goodchild, 1995).  They are not good at 
dealing with anything other than absolute time and position.  Fifth, besides hard computing, 
soft computing should be also studied in the context of spatial data mining together with 
uncertainty.  The mechanism of spatial data mining is close to human thinking, and its 
algorithms are often soft computing.  The traditional theories, for example, spatial statistics 
(Cressie, 1991) belongs to hard computing, which needs a lot of observed sample values to 
deal with randomness.  But the decreasing of uncertainties is unequal to the increasing of 
spatial data (Wang, 2002).  Fuzzy sets care for fuzziness, the algorithms of which belong to 
soft computing (Zadeh, 1994).  But it is difficult to decide the fuzzy membership function.  
Moreover, the soft computing becomes the hard computing once the fuzzy membership 
function has been decided.  Sixth, new techniques on multi-uncertainty should be further 
studied because many uncertainties appear at the same time in spatial data mining, e.g., 
randomness and fuzziness.  Then, in order to continue enjoying its success in spatial 
applications, spatial data mining should think of the uncertainties carefully, and the theories 
and techniques to deal with the uncertainties may have to be further studied.  How to select the 
existed interesting techniques of spatial data uncertainties and apply them in spatial data 
mining?  How to think of the impacts from spatial data uncertainties when spatial data mining 
is carried out?  How to realize the mutual uncertain transformation between qualitative 
knowledge and quantitative data?  All these questions promote the work of uncertainty-based 
spatial data mining in this paper. 
 
This paper is to propose the uncertainty-based spatial data mining.  The remained sections will 
be organized as follows.  Section 2 is the concepts.  Then section 3 presents the external 
aspects and the internal sources.  The usable methods will be presented in section 4.  Section 5 
gives a case study.  Conclusion is finally drawn in section 6. 
 
2 Concepts 
Spatial data point to the data that are able to represent the spatial existence of an entity, and 
there are various kinds, e.g., positional data, attributes, temporal data, images, graphics.  So it 
is difficult to define an uncertainty-based spatial data mining completely.  Here, only a 
describing definition is given. 
 
The uncertainty-based spatial data mining is to extract knowledge from the vast repositories of 
practical spatial data under the umbrella of uncertainties with the given perspectives and 
parameters.  With different granularities, scales, mining-angles, and uncertain parameters, it 
discovers the collective attribute distribution of spatial entities via perceiving various 
variations of spatial data and their combinations in the data space.  It is derived from spatial 



data mining that is a branch of data mining, and the discovered knowledge is also diversity 
(Table 1).   
 

Table 1. The discovered knowledge of uncertainty-based spatial data mining 
Knowledge Data 

mining 
Spatial data 
mining 

Uncertainty-based spatial data 
mining 

Association rule  Yes Yes Yes 
Clustering rule Yes Yes Yes 
Classification 
rule 

Yes Yes Yes 

Characteristics 
rule 

Yes Yes Yes 

Serial rule Yes Yes Yes 
Regression rule Yes Yes Yes 
Dependent rule Yes Yes Yes 
Spatial 
topological rule 

 Yes Yes 

Spatial 
distribution rule 

 Yes Yes 

Outlier  Yes Yes Yes 
 
2.1 Characteristics 
The concept is in the integrated contexts of both uncertainty and spatial data mining.  It is an 
uncertain process for spatial data mining to discover the little-amount refined knowledge from 
the large-amount coarse data.  In details, the uncertainties in spatial data mining may exist in 
spatial data, theories and techniques, mining process, knowledge characteristics, knowledge 
representation, knowledge interpretation, and so on.  At the same time, the manipulations of 
spatial data mining are more abundant than common data mining on transaction data, for 
examples, overlaying map layers, buffering spatial entities, overlapping spatial objects, 
merging / amalgamating polygons, which not only helps people to mine more knowledge, but 
also increases the chances to produce more uncertainties. 
 
First, the huge amount of objective spatial data may be incomplete, noisy, fuzzy, random and 
so on.  The real world abounds in uncertainty, and any attempt to model any aspect of the 
entities in the world should incorporate uncertainty.  There may be uncertainty in the 
understanding of entities or in the quality or meaning of the data.  The serious uncertainties in 
spatial data should be identified instead of presenting them as correct.  As the spatial data are 
the objectives of spatial data mining, the uncertainties are brought to spatial data mining along 
with spatial data at the beginning.   
 
Second, from different perspectives of the same set of data, there are various kinds of 
knowledge that may be discovered.  Either different people apply the same technologies, or 
the same people apply different technologies may discover different knowledge from the same 
data sets.  Even with different mining-angles, different granularities, and different scales, 
people may achieve different knowledge (Wang, 2002).  Moreover, the unknown knowledge 



is refined with high abstraction level, small scales, and small granularities, whereas the 
existing data are coarse with low abstraction level, big scales, and big granularities.  At a 
higher hierarchy, there may be uncertainty about the level of uncertainty prevalent in various 
aspects of the database.   
 
Third, the mining theories and techniques are able to deal with, manage, control, and make use 
of some aspects of the uncertainties, e.g., probability theory and mathematical statistics for 
randomness (Arthurs, 1965), fuzzy sets for fuzziness (Zadeh, 1965), rough sets for 
incompleteness (Pawlak, 1991), cloud models for the integration of randomness and fuzziness 
(Li, 1997).  But the uncertainty in the model may further result in more uncertainty introduced 
to entities or the attributes describing them.   
 
Fourth, the resulting knowledge may be hidden, implicit, valid, novel and interesting.  Either 
spatial or non-spatial is unknown in advance, potentially useful, and ultimately understandable, 
together with three parameters to measure its uncertainties.   
 
Fifth, it is uncertain to represent the discovered knowledge.  People often think of decision-
making with qualitative concept instead of quantitative data.  The discovered knowledge is 
generalized or summarized when many quantitative data are generalized into few qualitative 
concepts.  And it is uncertain to transform among data and concept.   
 
Finally, the framework may include preprocessing uncertainty, mining uncertainty, resulting 
uncertainty, and interpreting uncertainty, for example, spatial data cleaning, summarization 
and generalization, knowledge representation, and knowledge application.  Throughout the 
process of spatial data mining, all the uncertain characteristics of spatial data may be 
propagated and cumulated.  And new uncertainties will further come into being during the 
process of data mining, knowledge representation, and knowledge interpretation. 
 
2.2 Uncertainty parameters 
There are three threshold parameters to measure the uncertainty in spatial data mining, i.e., 
supportable level (support), confidential level (confidence), and interesting level (interest) (Li 
et al., 2001).  The supportable level of a rule carries the statistical significance of the spatial 
entities in the rule, the confidential level portrays the strength of the rule, and the interesting 
level describes how people are interested in the rule in their spatial decision-making.  The 
virtue of a rule is characterized by its uncertainty parameters.  The supportable level and the 
confidential level are also named prevalence, predictability in MineSet (Brunk, Kelly, Kohavi, 
1997). 
 
The supportable level and the confidential level are often found in spatial association rules.  
An association rule with large supports and high confidences is desired because they can be 
applied to many data, and hold with high probabilities.  Take “P ⇒ R (s%, c%)” for example.  
Here P and R are sets of spatial and non-spatial predicates, s% and c% are the supportable 
level and the confidential level.  The support level s% of a pattern P in a set of spatial objects 
S is the probability that a member of S satisfies pattern P, and it is the support of all entities 
associated with the rule.  The confidence c% level of the rule P ⇒ R is the probability that the 



pattern R occurs if the pattern P occurs.  The rule means that it is s% evidence to conclude that 
there is a correlation between P and R, and the degree of correlation between P and R is c%.  
That is, s% of the entities in the database contains P∪R, and c% follow the clause that R 
occurs if the pattern P occurs.   
 
The uncertainty parameters are the threshold indices, and they play an important role in 
decreasing the complexity of spatial data mining.  There might exist thousands of spatial rules 
in case of very large database.  The mining calculation involves repeated scanning of database 
and computing effort, which may become very complex as the number of spatial entities in the 
combination grows.  Although the hardware and software of calculation are getting cheaper, it 
is still expensive to calculate the larger number of data combinations.  Besides the algorithms, 
e.g., Apriori, Sampling, Dynamic Item count, Partitioning, Parallelism, the uncertainty 
parameters are also used to reduce the database activity via filtering the discovery of 
infrequent, uninteresting, or unhelpful rules (Wang, 2002).  Once the frequent subsets in a 
database are determined, the rule can be mined via simpler algorithms. 
 
2.3 Spatial data cleaning 
Spatial data cleaning is an essential in uncertainty-based spatial data mining.  It is the process 
of improving spatial data quality.  In a narrow sense, spatial data cleaning includes 
understanding the semantic fields and their relationships in databases, checking and affirming 
the completeness and consistence of acquired data, determining cleaning regulations in the 
real task context, eliminating error data, removing redundant data, filling lost data with a 
certain technique, handling noisy data，resolving data conflicts, revising data, improving 
accuracy, correcting the radiate and geometric deformation on graphics and images, and 
bettering whole usability of spatial data (Wang, Wang, Shi, 2002). 
 
Spatial data cleaning is not a simple processing of turning the records into the right records, 
and it also analyzes and recombines spatial data.  It pays more attention to the content 
inconsistency than the form conflicts among the multi-sources spatial data.  The methods on 
spatial data cleaning are tightly related to the exact task of spatial data mining, and its basic 
methods are data merging or data purging.  Based on a certain objective, spatial data 
recombination extracts the spatial data from the separate sources, then put into the target 
spatial database, which may not only save the storage and computation, but also accelerate the 
speed, accuracy and validity.  Under the umbrella of the techniques, spatial data mining can be 
classified into three types, data migration that gives simple migration regulations, data 
scrubbing that makes use of specific field knowledge, and data auditing that makes data clean 
with statistical analysis. 
 
2.4 Advantages and benefits 
It is known that the uncertainty is unavoidable in spatial data sets, and it can never be 
eliminated completely, even as a theoretical idea.  Moreover, the decreasing of spatial data 
uncertainty is unequal to the increasing of data.  The limitation of mathematical model and 
technology may further propagate even enlarge the uncertainty during the process of GIS 
analysis, which more easily leads to mistaken decision making. 
 



Simultaneously, on the spatial reality world, the mathematical hypothesis should be in the 
context that the uncertainty is unavoidable, and the data acquired from the reality world are 
often incomplete.  It is unable to well study an entity via taking the place of both certainties 
and uncertainties with only certainties.  Rational uncertainties (e.g., the uncertainties in natural 
language) may save people out of the data sea, and only the necessary data are allowed to 
enter decision-making thinking, then to sublime knowledge. 
 
If the uncertainties are made good and right use of, it may be able to avoid the mistaken 
knowledge discovered from the mistaken spatial data.  Otherwise, based on the mistaken 
knowledge, the spatial decision may be made incorrectly.  To improve spatial data quality in 
the context of spatial data mining, it includes understanding the semantic fields and their 
relationships in databases, checking and affirming the completeness and consistence of 
acquired data, determining cleaning regulations in the real task context, eliminating error data, 
removing redundant data, filling lost data with a certain technique, handling noisy data, 
resolving data conflicts, revising data, improving accuracy, correcting the radiate and 
geometric deformation on graphics and images, and bettering whole usability of spatial data. 
 
3 Aspects and sources 
The uncertainty mainly arises from the complexity of the real world, the limitation of human 
recognition, the weakness of computerized machine, and the shortcomings of techniques and 
methods.  In details, they may include instruments, environments, observers, projection 
algorithms, slicing and dicing, coordinate system, image resolutions, spectral properties, 
temporal changes, etc.  At the same time, their current limitations might further propagate 
even enlarge the uncertainty during the process of spatial data mining.  The external aspects 
and their internal sources of uncertainty-based spatial data mining are shown in Table 2.  All 
of them are affected by the scale, granularity and sampling in spatial data mining.  Some may 
further be treated as the factors in assessing the success of spatial data mining (Wang, 2002). 
 

Table 2. External aspects and internal sources of uncertainty-based spatial data mining 
Internal sources 

External aspects Randomne
ss 

Fuzziness Blunders Chaos 

Error Yes Yes Yes Yes 
Positional 
uncertainty  

Yes Yes Yes Yes 

Attribute uncertainty Yes Yes Yes Yes 
Topological 
uncertainty 

 Yes Yes  

Inaccuracy  Yes Yes Yes Yes 
Imprecision    Yes 
Inconsistency  Yes Yes Yes Yes 
Incompleteness  Yes Yes  
Repetition  Yes  Yes Yes 
Vagueness Yes Yes   
Lineage     Yes 



Temporal 
uncertainty 

Yes Yes Yes Yes 

Knowledge 
uncertainty 

Yes Yes Yes  

 
3.1 External aspects 
There are various external aspects of uncertainties in spatial data mining.  Compared with the 
error, the uncertainties in spatial data mining are more complex and common.  Besides the 
errors, spatial uncertainties further include positional uncertainty, attribute uncertainty, 
topological uncertainty, inaccuracy, imprecision/inexactitude, inconsistency, incompleteness, 
repetition, vagueness, noisy, omittance, misinterpretation, misclassification, abnomalities and 
other possibilities (Table 2).   
 
Error is everything introduced by limited means of taking measurements.  It is mainly 
classified into systematic error, random error, and blunder error, which can be improved by 
applying more accurate measurement methods and more sensitive instruments.  Alternatively, 
error can be viewed as a form of inherent uncertainty in some abstracted characteristics of the 
real world.  The theorem of error propagation is a classical method to deal with the data error. 
 
Position uncertainty (or geometric uncertainty, or spatial uncertainty) is the difference between 
the apparent locations of the feature as recorded in a database under the umbrella of the 
selected system and its true location in the real world.  And it is a fundamental aspect of 
spatial data mining concerning specific locations on the earth, which is uncertain in human 
cognition.   
 
Attribute uncertainty (or thematic uncertainty) in spatial data is the spatiotemporal differences 
between known attributes and attributes to know in terms of the spatial entity (Shi, Wang, 
2001).  Attribute uncertainty and position uncertainty are both tightly associated with each 
other, for example, the indeterminate boundary of different classifications (Burrough, Frank, 
1996). 
 
Topological uncertainty describes the spatial relationships that are associated with spatial 
entities having indeterminate or vague boundaries, i.e., disjoint, touch/adjacent, overlap, equal, 
cover/intersect, covered/ intersected by, contain, contained by.  In data mining applications, 
one must not only be aware of uncertainty, but also exploit it in an effort to discover 
relationships in data that might not have been discovered otherwise, e.g., association rules 
describing spatial objects associated with other objects, and generalized attributes for spatial 
data (Koperski, Han, 1995). 
 
Inaccurate data are the data different from the true value, dated without updating, data from 
inaccurate calculation, error type data, incorrect data, misunderstanding data, strange form 
data, or encrypted data.   
 
Imprecise data are due to a finite representation of spatial entities.  And they may be from 
technical instruments, mathematical models, or human sense organs.  For example, the regular 



tessellation used in raster pixels, where the element of the tessellation is the smallest unit that 
represents space. 
 
Inconsistent data arise when several versions of the same object exist, due either to different 
time snapshots, or datasets of different sources, or different abstraction levels (Shi, 1994).  
And they may be grouped into two classifications, conflicts in the context and conflicts out of 
the context.  Spatial inconsistency consists in the data-source interior and among different 
sources.   
 
Incompleteness is the uncertainty caused by the reasoning with inadequate information.  It is 
related to totally or partly missing data on the records, or missing the attributes of the record.  
For example, a dataset is obtained from digitizing paper maps while pieces of lines are gone.  
The part of a document may also be torn, damaged or otherwise illegible but still mostly 
usable.  The completeness can be assessed relative to the database specification.  It is noted 
that rich data are not equivalent to complete data.  Sometimes they may possibly be 
incomplete.  
 
Repetitive data are that there are more than one repeated data on the same spatial entity in a 
database, or different databases.  The repetitive data may be the records, the attributes of the 
record, the topological relationships, etc. 
 
Vagueness may come from the spatial entity itself, mathematical modeling, or human 
cognition. It is an intrinsic property of many spatial features that do not have crisp or well-
defined boundaries really.   
 
Lineage describes the systematic uncertainties at any stage of data life, e.g., source 
observations, acquisition methods, form transformations, data deviations, assumptions and 
criteria. 
 
Temporal uncertainty is the uncertainty of either date or time on the data and the discovered 
knowledge, together with the effectiveness for a given valid period of data mining.  An exact 
date may be vaguely specified by only the month, interval between two points, year, or even 
duration instead of a day.  For example, it is uncertain that the distinct date of “17/10/2003” is 
specified by “October”, “between 16/10/2003 and 18/10/2003, “2003”, “from 2000 to 2005”.  
Simultaneously, a certain time may be unclearly expressed, e.g., “9:00 a.m.” is given in “in the 
morning”.  The spatiotemporal uncertainty may be caused by the lost historical data on the 
references to a place or object, e.g., dated or ephemeral buildings. 
 
3.2 Knowledge uncertainty 
In the context of the uncertainties, it plays an essentially important role in spatial data mining 
to properly represent the knowledge discovered from database because there are uncertainties 
hidden in the knowledge.  When roll-up or drill-down is carried out during the process of 
spatial data mining, the represented knowledge and the objective data should be transformed 
back and forth as human being are thinking.  The cell of human thinking is a linguistic atom 
that is the minimum linguistic term, and the linguistic term is the basic unit of natural 
language.  The linguistic atom is corresponding to the most elementary concept.  



Fundamentally, the natural language serves to describe complicated concept with most 
elementary ones, and their various combinations.  With the natural language, human beings 
could observe and analyze the same spatial entities on variant levels of granularities, and 
further in the different worlds of different granularities simultaneously.  So spatial qualitative 
concept is an alternative to represent the knowledge because the discovered rules are often 
associated with spatial entities at the cognitive concept hierarchy, and the natural language 
certainly becomes the best way to represent spatial knowledge.  In this context, it is the basis 
of spatial data mining to search for the qualitative concept described by the natural language to 
generalize a given set of quantitative datum with the same feature category, and it weights 
more to describe the quantitative concept with linguistic terms than with precise math 
equations.  That is, spatial qualitative concept can be made by a set of spatial data, and it is 
more direct and understood than spatial quantitative data.  The more abstract the knowledge to 
be discovered, the greater the advantage.   
 
However, the concept may be either certain or uncertain.  The extension of certain concept is 
precise and stable, while that of uncertain concept is imprecise and changeable.  Human 
describes the uncertain concept via natural language.  At the same time, the uncertain concept 
mainly concerns with fuzziness and randomness.  There is a gap to be bridged between the 
rigidity of computerized spatial data and the uncertainty of spatial qualitative concept.  In 
details, it is difficult to carry out the uncertainties of spatial transition between qualitative 
concept and quantitative data, especially when more than one uncertainties appear together at 
the same time, e.g., both the fuzziness and randomness. 
 
3.3 Internal sources 
The abovementioned external aspects of uncertainties describe the difference between the 
observed values of an entity and their true values in a spatiotemporal space.  Given a 
mathematical interpretation, the internal sources may be randomness, fuzziness, blunders, 
chaos, etc. 
 
Randomness is the uncertainty included in a case with a clear definition, but not always 
happening every time, or the instabilities of the membership that an element belongs to a 
qualitative concept.  The essence of randomness is that there are a lot of unknown factors to 
affect it, and the effective impact of each factor is not decisive.  So the randomness will 
become less when people understand and think of those factors.  Randomness may be 
measured via the probability that the case happens.  Its mathematical tools are probability 
theory and mathematical statistics, and their extensions or developments, e.g., spatial statistics, 
evidence theory, vector of probabilities, “S” band. 
 
Fuzziness is the uncertainty included in the case that has happened in the opposed and 
incomplete world, but cannot be defined exactly.  That is, the boundary of a qualitative 
concept or classification is so vague that an element of the data set will not be uniquely 
assigned to one subset.  In fact, fuzzy uncertainty comes from the macro simplification, 
without getting to the bottom of a factor, or the factor unknown to people.  Fuzziness is 
measured by the fuzzy membership value in the context of fuzzy sets (Zadeh, 1965).  The 
possibilistic approach of uncertainty offered by fuzzy sets forms a useful complement to the 
measures of probability theory.   



 
Chaos is the uncertainty in a complex large system composed of many cell system 
(Awrejcewicz, 1989).  A single cell may be a simple certain.  But the system state shows 
uncertain when lots of cells are coupled in a complex system.  That is, chaos is the complex 
activities when simple rules are assembled together in a nonlinear certain system, and it has 
properties of both randomness and certainty.  Chaos theory believes that a spatial entity is in 
an imbalance because it may be impacted by various factors.  The imbalance leads to the 
uncertainty.  In geo-spatial science, it shows spatiotemporal asymmetry and instability 
(Awrejcewicz, 1989).  At present, the complex problems with chaos are resolved mainly via 
distinguishing and extracting the essential rules from chaos system, analyzing and predicting 
the motion characteristics of the system, or producing artificial chaos on purpose. 
 
Blunders are caused by the mistakes, careless, laziness, tire, inappropriate operation, 
disturbance, omittance, misinterpretation, misclassification, abnomalities and so on from 
human being occasionally.  The detection and control of blunders may be referenced in (Li, 
1988). 
 
3.4 Management and control 
The strategies for managing uncertainties in data mining may develop formal, rigorous models 
of uncertainty, understand how uncertainty propagates through spatial processing and decision 
making, communicate uncertainty to different levels of users in more meaningful ways, design 
techniques to assess the fitness for use of geographic information and reducing uncertainty to 
manageable levels for any given application, learn how to make decisions when uncertainty is 
present in geographic information, i.e. being able to absorb uncertainty and cope with it in our 
everyday lives.  In applying the strategy, consideration is initially given to: the type of 
application, the nature of the decision to be made, low risk versus high risk, non-controversial 
versus controversial, non-political versus political, the degree to which system outputs are 
utilised within the decision making process (Shi, Goodchild, Fisher, 2002). 
 
There are two main technical directions to control and reduce uncertainty in an acceptable 
degree.  One is data acquisition that highlights the information acquired from the process of 
data collection and data amalgamation, the other is data cognition that emphasizes the 
knowledge discovered from data extraction process and information generalization.  In the 
past, the direction of data acquisition has achieved many results, e.g., new instruments, new 
sensors, data amalgamation system, database technology, computerized network.  These 
results have bettered data acquisition and data allocation in some extent.  At the same time, 
new algorithms on object track and object capture have further ameliorated the quality of 
produced information and knowledge.  The direction of data cognition stresses the design of 
cognitive process, which reduces the uncertainty by providing decision-maker with more 
knowledge.  An interdisciplinary subject, spatial data mining and knowledge discovery, will 
play an important role in this direction (Wang, 2002). 
 
4 Usable techniques and methods 
It is known that the uncertainties in spatial data are inherent, and may be propagated from the 
beginning to the end.  Now the uncertainty has been studied more in accordance with spatial 



data quality, the traditional computational solutions of which may address spatial 
parameterization and forecast uncertainty but are largely mathematical simultaneously. 
 
4.1 GIS data models 
It found that many problems of discrete variable and continuous variable did not show 
isotropy, and semantic symbols had various influences on the results (Fisher, 1991; Mcmaster, 
1996).  So GIS data model that mainly includes an exact object model and a continuous field 
model were used, and cartographic convention further enhanced them (Burrough, Frank, 1996).   
 
The object model might discuss the position uncertainty of discrete objects via statistical 
simulation (Shi, 1994).  However, the object model might lose details in one or more 
dimensions when the computerized GIS handled with the spatial entity.  For instance, a bus 
stop becomes a point without size or shape.  In many cases, some attribute values of the spatial 
entity are inexact or inaccessible.  The abovementioned facts make it indiscernible to associate 
a spatial element (e.g. pixel) to a given entity in attribute classification.  In order to improve 
the exact object model, the continuous field model was further given to study the data 
uncertainties of continuous objects (Zhang, Goodchild, 2002).  But the field model could not 
take the place of the object model.  Hence, when they are used to describe a spatial entity with 
spatial data, the object model is to discrete entity with vector data, and the field model is to 
continuous entity with raster data (Goodchild, 1995; Burrough, Frank, 1996).  The object 
model and the field model often compensate each other when depicting the spatial distribution 
of uncertainties. 
 
4.2 Analysis of error propagation 
The uncertainties in spatial data were first studied as errors of observed data (Mikhail, 
Ackermann, 1976), highlighting the measurement and handling ways of positional errors.  
Traditionally, the analysis of error propagation often gives the prior hypothesis that the error 
of input information is known, and then discusses the error of output information according to 
the theorem of error propagation.  There are three alternative methods to analyze the 
propagation of attribute uncertainty, i.e., Taylor series method, Monte Carlo method and 
sensitivity analysis.  Taylor series method is to approximate the function by a linear function 
that is locally a good approximation of the function.  Monte Carlo method uses an entirely 
different approach to analyze the propagation of error through the GIS operation.  But it is 
very difficult for both of the two methods to determine the relationships between input errors 
and output errors.   
 
When it is necessary to assess the outcome quality of data mining while little prior knowledge 
of errors is known, the sensitivity analysis may be used to mainly study how the imposed 
perturbations (variations) of the input uncertainty influences the output knowledge, by adding 
simulated theoretical variables to disturb input information in spatial data mining.  The 
referenced data are the input data without any disturbed variables.  And different disturbed 
variables of input will get different analyzed results of output, which includes different errors, 
e.g., attribute, position, map deletion, polygon, confidence region.  Lodwick et al. (1990) 
identified differential measures on raster data and map overlapping, associated with 
extrapolation, classification, differential scales or weights, and resolution.  Bonin (1998) 
studied how the uncertainty was propagated in vector GIS, he (2000) further proposed a noise 



probability model to estimate attribute uncertainty on the basis of three parameters, i.e., deficit 
ratio, excess ratio, and confusion ratio.  Mishra et al. (1999) studied the mistaken classification 
by fastening the errors on the true data. 
 
However, they are all strictly mathematical.  This may cause such incomprehensibility 
problems to the lay users without the background-associated knowledge that they may be 
unaware of, even misuse of the accurate descriptors, e.g., reliability diagrams and position 
error estimation.  And it is also quite difficult to explain to them.  Moreover, based on the 
man-made statistical simulation, the sensitivity analysis on spatial uncertainty imports 
theoretical errors in the context of probability theory and mathematical statistics.  It needs a lot 
of data.  And some issues of the sensitivity analysis may be studied further, for example, 
theoretical error of spatial uncertainty estimation, index to measure the uncertainty of 
parameter, measurement of how sensitive an attribute uncertain is, etc. 
 
4.3 Probability theory and mathematical statistics 
Probability theory is the classical mathematical theory on randomness (Arthurs, 1965).  
Probability theory and mathematical statistics study randomness via considering the stochastic 
probability that the case happens.  And the probability is an indicator of the frequency or 
likelihood that an element is in a class.  With probability theory and mathematical statistics, 
some theories and techniques, for example, spatial statistics, error band, epsilon band, “S” 
band, evidence theory, etc., were further put forward and applied (Shi, Wang, 2001, 2002).  
 
Based on the classical crisp sets, spatial statistics studied the stochastic uncertainty (Cressie, 
1991).  For the error (confusion) matrix on the result of remote sensing image classification 
could not show the spatial distribution of uncertainty, the vector of probability was proposed 
(Shi, 1994).  Evidence theory was an extension of probability theory (Shafer, 1976), and it 
could model the uncertainty of the mining process for image databases and other databases 
better than traditional probabilistic models. 
 
However, the entities described with crisp sets-based methods have distinct boundary of 
attributes, which was not consistent to the reality world with uncertainties. 
 
4.4 Extended sets 
The crisp sets were extended to fuzzy sets (Zadeh, 1965), rough sets (Pawlak, 1991), geo-
rough space (Wang, 2002), cloud model (Li, 1997), and so on. 
 
Fuzzy sets characterize the fuzziness via the fuzzy membership value that an element belongs 
to a concept.  And the fuzzy membership deals with the similarity of an element to a class 
(Zadeh, 1965).  Fuzzy sets approach can be extended to spatial data mining, e.g., representing 
the uncertainty in the spatial relationships used in the spatial association rules mining.  The 
problem with a fuzzy system is it is difficult to deal with too many features, membership 
functions, and rules.  Fuzzy sets and probability theory are both valid approaches to the 
uncertainty.  They integrate set theory and predication equation, and map the uncertainty to a 
numerical value in the interval [0, 1] in order to abstractly approach the spatial entity in the 
real world.  The fuzzy membership makes much more sense than the probability when 
describing how young a man is, while the probability makes much more sense than the fuzzy 



membership when predicting the outcome of a kid birth.  However, neither of them can handle 
randomness and fuzziness at the same time. 
 
Rough sets specify the uncertainty from incompleteness via a pair of upper approximation and 
lower approximation, and may identify cause-effect relationships in databases as a form of 
data mining (Pawlak, 1991).  In the given universe of discourse, rough sets are 
incompleteness-based reasoning in the form of decision-making table.  The lower 
approximation is the set of spatial elements that surely belong to the spatial entity, while the 
upper approximation is the set of spatial elements that possibly belong to it.  The difference 
that the upper approximation minus the lower approximation leaves is the uncertain boundary.  
The uncertainty may be managed via incorporating rough sets into the underlying data model 
and through rough querying of crisp data.  Because all uncertainties are generally considered 
in the boundary set, it is unable to decide whether the element in it belongs to the spatial entity 
or not. 
 
4.5 Cloud model 
In the real spatial world, there often exists more than one uncertainty at the same time, which 
has to be handled during the process of uncertainty-based spatial data mining.  For example, 
both randomness and fuzziness are often included in spatial entities.  In the uncertainty-based 
spatial data mining, abandon both of the uncertainties via traditional crisp mathematics? 
Consider only randomness without fuzziness, like probability theory and mathematical 
statistics?  Consider only fuzziness without randomness as fuzzy sets?  Think of randomness 
and fuzziness generally in an indeterminate boundary set?  In fact, the complexity of a system 
is a rough inverse ratio of the precision to reach when the system is studied.  If people 
emphasize particularly on the precision, they may be in hot water (Huang, 1997).  Given some 
conditions, the certainties and uncertainties can be transformed one another.  The precise 
entity in the macro-world may become uncertain in the micro-world.  An inexact entity at a 
certain extent has arrived at some precision if the cognition when it is enough to match the 
decision-making. 
 
Human natural language with an indeterminate boundary unifies the fuzziness and randomness.  
Being the carrier of thinking, the natural language represents the intelligence of human 
thinking and actions with various uncertainties.  Although it is difficult to give an exact 
definition on a piece of natural language, and various people may understand the same natural 
language with different random meanings, the people can still intercommunicate with each 
other by using the natural language, e.g., transition between qualitative concept and 
quantitative data.  Similar to the characteristics of the natural language, the cloud model may 
be an alternative to study spatial data mining in the contexts of randomness and fuzziness  
 
The cloud model integrates the randomness and fuzziness by using the formalization-
computerized language in a unified way, in which the advantages of soft computing in the 
natural language are absorbed (Li, 1997).  The essential unit is the concept cloud composed of 
cloud drops, and the thinking is the precision considering both randomness and fuzziness.  It 
depicts a qualitative concept with 3 numerical characteristics, i.e., Expected value (Ex), 
Entropy (En) and Hyper-Entropy (He).  When lots of cloud drops form a piece of cloud on a 
concept, the uncertainty is also shown.  The cloud model changes human qualitative 



experience and cognition into the rules of linguistic terms instead of an exact mathematical 
model.  Soft computing-based cloud rule is consistent to real data distribution and human 
thinking, and hard computing is the special case.  The mapping between qualitative concept 
and quantitative data are implemented with forward cloud generators and backward cloud 
generators via mathematical methods at any time.  Its formal way to transform between quality 
and quantity may interpret the uncertain reasoning mechanism when more than one qualitative 
reasoning rules are activated at the same time.  Moreover, the cloud model can automatically 
generate the concept hierarchy, which may improve the discovery efficiency of knowledge in 
different hierarchies, for the climb and jump of concepts is the basis of knowledge discovery 
at different hierarchies.  So the cloud model may overcome the shortcomings of GIS data 
models, the difficulties of error propagation, the hard-computing deficiency of probability 
theory and mathematical statistics, the inherent shortage of membership function in fuzzy sets, 
the limitation of boundary set in rough sets and so on.   
 
Now the cloud model has been applied in many fields.  It was extended to discover the 
predictable rules with different time granularities (Yang, Li, 1998), classification rules on 
improving remotely sensed images (Di, 2001), Boolean association rule in the attribute 
concept (Du, Li, 2000), serial rules on periodical change and current trends with a pan-concept 
tree via cloud transform (Jiang, Li, Fan, 2000), characteristics rules and predicable rules on the 
movements of landslide, clustering rules on the datasets together with data fields (Wang, 2002; 
Wang et al., 2003), description and analysis of GIS attribute uncertainty (Shi, Wang, 2001, 
2002).  By using a cloud model-based qualitative control mechanism, Li (1999) carried out the 
intelligent control of the dynamic balance of a headstand pendulum.  A new interpretation for 
the 24 solar-terms in lunar calendar was given in the cloud model by mapping the uncertain 
conditions and compendia environments to the uncertainly distributing cloud drops (Li, 1997, 
2000).   
 
5 Case study 
The case study is on Baota landslide that locates in Yunyang, and in the region of Three Gorge 
on Yangtze River.  When monitoring the movement of a landslide, it is unable to monitor all 
the points on the landslide.  People often select the typical points and monitor them.  And the 
movement rules of the landslide are discovered from the monitoring database on the typical 
points.  Contrast to the whole data on the landslide movement, the monitoring data stored in 
the database are much more incomplete.  The external aspect of incompleteness may come 
from the internal sources of randomness and fuzziness (Figure 1).   
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Figure 1.  The external incompleteness from the internal randomness and fuzziness 

 
The properties of dx, dy, and dh, are the measurements of displacements in X direction, Y 
direction and H direction of the landslide-monitoring points.  From the observed landslide-
monitoring values, the backward cloud generator can mine Ex, En and He of the linguistic 
term indicating the level of landslide displacement, i.e. gain the concept with the backward 
cloud generator.  Then, with the three gained characteristics, the forward cloud generator can 
reproduce as many deterministic cloud-drops as you would like, i.e. produce synthetic values 
with the forward cloud generator (Li, 1997).  Allthough there are differences between the 
synthetic landslide-monitoring values and the observed ones, their collective distribution is 
consistent.  The synthetic landslide-monitoring values can also be taken as the landslide-
monitoring values in the context of the three characteristics from the observed ones.  
 
Figure 2 is the cloud-based knowledge on Baota landslide monitoring in X direction, which is 
the focus vertical direction of Yangtze River.  In Figure 2, the symbol of “+” is the original 
position of monitoring point without movement, different rules are represented via different 
pieces of cloud, and the level of color in each piece of cloud denotes the discovered rules of a 
monitoring point.  “BT11, …, BT34” are the serial numbers of Baota landslide monitoring 
point.  Figure 2 indicates that all landslide monitoring points move to the direction of Yangtze 
River, i.e., south, or the negative direction of X axle.  The displacements of the back part of 
Baota landslide are bigger than those of the front part in respect of Yangtze River, and the 
biggest exceptions are the displacements of monitoring point BT21.  Furthermore, when Baota 
landslide was investigated (Wang, 2002), it was found out that the landslide had moved to 
Yangtze River, and a small size landslide had taken place near BT21.  It matches the 
discovered spatial knowledge. 
 



 
Figure 2. Spatial rules on monitoring points of Baota landslide 

 
6 Conclusions 
This paper proposed the uncertainty-based spatial data mining, together with its concepts, 
aspects, sources, and usable methods.   
 
The uncertainty-based spatial data mining is to extract knowledge from the vast repositories of 
practical spatial data under the umbrella of uncertainties with the given perspectives and 
parameters.  If the uncertainties are made good and right use of, it may be able to avoid the 
mistaken knowledge discovered from the mistaken spatial data.   
 
The uncertainty mainly arises from the complexity of the real world, the limitation of human 
recognition, the weakness of computerized machine, and the shortcomings of techniques and 
methods.  The external aspects of uncertainties may come from the internal sources in a given 
mathematical interpretation, which decides the selection of usable techniques.   
 
The case study indicated that it was necessary to consider the inherent uncertainties in spatial 
data mining them.  New techniques should be developed to handle the cases when there is 
more than one uncertainty in spatial data mining at the same time.  A practical direction is the 
problem-oriented data mining with uncertainties. 
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