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ABSTRACT 

Geographic information uncertainty results from the complexity of the 
human-machine-earth system in general, and the differences among human cognition, 
computer representation and geographic reality in particular. In this view, different types of 
uncertainty are organized into a taxonomy of uncertainty to clarify the semantics of 
uncertainty. Moreover, we introduce how to support geographic spatio-temporal 
information uncertainty modelling in our database conceptual model MADS. Primary 
uncertain spatio-temporal data types and uncertain spatio-temporal relationships are 
formally defined. The idea of multi-stage uncertainty resolution, including numerical 
indicators of data uncertainty at the stage of metadata model, is given. 
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1. THE NATURE OF UNCERTAINTY 

In Geoinformatics, it is commonly acknowledged that uncertainty arises from limited 
computerization of infinitely complex geographic word.  The limited computerization 
refers to discrete representation, finite levels of detail, incomplete data collection, deficient 
knowledge, etc.. It is said that uncertainty is an inherent property of GIS data or geographic 
phenomena. However, by the inherent property what does it mean? Undoubtedly, we need 
a context of assigning uncertainty with a meaning. To this end, we propose the 
human-machine-earth system as this type of context shown in Figure 1. 
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At the top level, we consider human being, machine and the earth as three highly 
abstract entities which are mutually related and interacted for constructing a real word, or 
say, the human-machine-earth system. As far as the interaction is concerned, there are 
human-environment interaction, human-machine interaction, and computer-virtualised or 
augmented reality. Roughly, geographic information science could be known as an 
interdisciplinary science of cognitive science, geography and computer science.  

In our view, uncertainty results from the complexity of the human-machine-earth 
system as in Figure 2. More precisely, uncertainty results from the differences among 
human being, machine and the earth as well as the differences within human being or 
machine or the earth. Generally, geographic information uncertainty reflects the richness of 
geographic states, the inability of human cognition, and the limited computing capacity of 
machine.  
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Figure 2. The nature of uncertainty 

other angle, it is the differences among geographic reality, computer 
 and human cognition that makes it possible for human being, machine and 
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se of differences between entities. When geographic reality, computer 
 and human cognition are highly related or consistent, uncertainty is 
ved. In a sense, the truth is achieved through the coherency of entities. 
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entities within human cognition or machine or the earth. Uncertainty of 
human-machine-earth relations arises from the differences among cognitive, computational 
and geographic entities. Moreover, uncertainty of cognitive entities is mainly divided into 
perceptual uncertainty, memory uncertainty and thinking uncertainty. One kind of 
perceptual uncertainty is visual uncertainty, such as visual haze. The lack of knowledge 
(ignorance) is renown as memory uncertainty. Insolvability(undecidability) of problem  
falls into thinking uncertainty. Non-classical logical reasoning, including modal logic, 
multi-valued logic, non-monotonic logic, qualitative calculus, probabilistic and 
possibilistic logic, may be put into thinking uncertainty. 

As for uncertainty of human-machine-earth relations, it is further divided into 
inaccuracy, incompleteness, inconsistency and imprecision. Inaccuracy, also called error, 
refers to some deviation of measurement value from the true value. The slight deviation of 
the measurement value from the true value is named approximation, and the heavy 
deviation of the measurement value from the true value is named incorrectness or the 
wrong. Incompleteness means missing of some values, frequently interpreted as partial 
computational and cognitive description of the whole geographic phenomena. 
Inconsistency means that, for the same geographic entity, there exist several different 
computational and cognitive statements. In degree of inconsistency, there exists 
representational diversity (i.e., conflict), semantic mismatch (i.e., incoherence) and 
semantic contradiction (i.e., invalidity). Imprecision refers to the degree of exactness of 
computational and cognitive values, which is closely related to the resolution. Imprecision 
with a low resolution of values is named non-specificity. In non-specificity, the true value 
falls into an interval of possible values, e.g., disjunction or negation of possible values. 
Imprecision with a lower resolution of values is named ambiguity or confusion. In 
ambiguity, it is difficult for us to find out such an interval into which the true value falls. 
Imprecision with the much lower resolution of values is named vagueness or fuzziness. By 
fuzziness it means the true value is gradually changing from the false to the truth. That is, 
no sharply defined boundary is given between the false and the truth. 

Uncertainty of geographic entities 
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3. GEOGRAPHIC INFORMATION UNCERTAINTY MODELLING IN 

DATABASES 
MADS is a GIS conceptual data model with characteristics of 1) spatio-temporal 

conceptual modelling, 2) ODMG-conformant, 3) application- and resolution-adapted 
representation, 4) visually aid schema design (MADS, 1997; Parent C., et al., 1999, 2000). 
In this section, we present how geographic information uncertainty modelling is supported 
in MADS. In particular, primary uncertain spatio-temporal data types and uncertain 
spatio-temporal relationships are formally defined. The idea of multi-stage uncertainty 
resolution, including numerical indicators of data uncertainty implemented at the metadata 
stage, is given. 
 
3.1 PRIMARY UNCERTAIN SPATIO-TEMPORAL DATA TYPES 

As shown in Figure 4, uncertainty of a geographic entity can be modelled with 
uncertainty of its geospatial, temporal and thematic attributes.  
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uncertain geo uncertain time uncertain theme

uncertain entity

 

 
A hierarchical system of uncertain spatial data types is designed as in Figure 5. That 

is, uncertain geo(random geo(random point, random line, random area), fuzzy geo(fuzzy 
point, fuzzy line, fuzzy area)). The formal definitions of these primary data types are given 
as follows. 
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Figure 5. Uncertain geospatial data types 
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Definition 1 ( random ). A random point is used for spatially modelling a 

point-like geographic entity stochastically occurred. A random point is a coordinate point 

associated with its probability, denoted . The domain of data type 

“ ” is a set of random points.  functionally performs a mapping 

from  to a unit interval of probability, i.e., . 

point

)),,(( Pyxpr

pointrandom

random

pointrandom

GSpace ]1,0[: →GSpacepoint

For example, with a GPS receiver, the coordinate point  will be 

collected with a probability of 0.9 at next moment. It is modelled as a random point 

. 

)20.32,23.10( cmcm

)9.0),20.32,23.10(( cmcmpr

Definition 2 ( random ). A random line is used for spatially modelling a linear 

geographic entity stochastically occurred. Random line can be modelled in holistic or 
reductionistic way.  

inel

In a holistic way, the random line is modelled as a deterministic line associated with 

its probability of occurrence, denoted . The domain of data type “ ” is a 

set of random lines. Let a set of deterministic lines be a space of lines, denoted . 

 functionally performs a mapping from  to a unit interval of 

probability, i.e., .  

),( Pllr

]1,0[

inelrandom

LSpace

inelrandom LSpace

: →LSpaceinelrandom

For example, from the Lausanne train station CFF to the university EPFL, we can 
take bus or metro. The route line of CFF to EPFL can be modelled with a random line, bus 

line or metro line, i.e., . )}5.0,(),5.0,{( metrolinebuslineEPFLrouteCFFto

Alternatively, in a reductionistic way, the random line is modelled as a set of random 

points of which the random line is composed, denoted . For brevity, it is 

assumed that random points on the line are independent and in accordance with the same 
probability distribution.  

),...,,( 21 rnrrr pppl

For example, a GPS-instrumented post car goes from the main post office to EPFL 
every day. On the electronic map, the post car route is modelled with a sequence of random 
points sampled by GPS.  

Definition 3 ( random ). A random area is used for spatially modelling an area 

geographic entity stochastically occurred. Analogous to , random area can be 

modelled in holistic or reductionistic way. 

area

inelrandom
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In a holistic way, the random area is modelled as a deterministic area associated with 

its probability of occurrence, denoted . The domain of data type “ ” is 

a set of random areas. Let a set of deterministic areas be a space of areas, denoted . 

 functionally performs a mapping from  to a unit interval of 

probability, i.e., .  

),( Paar

]1,0[

arearandom

ASpace

arearandom ASpace

: →ASpacearearandom

For example, consider your car as an area-like object on the large-scale map, the car 
may be parked on the roadside or on the spot. Assume that the car is parked on the spot 
with a probability of 0.95. Then the car is modelled with a random area.  

Alternatively, in a reductionistic way, an area is approximately represented with its 
boundary. Thus, the random area can be modelled with its indeterministic boundary, i.e., a 

random polyline. In this case, the random area is denoted . )( rr la   

For example, Geneva Lake is stochastically changing as lake water rising up and 
falling down. The random area, e.g., Geneva Lake, can be identified with its random 
boundary. 

For fuzzy geographic objects, we have primary fuzzy data types of fuzzy point, fuzzy 
line and fuzzy area. In our project, the possibility theory is chosen for fuzzy object 
modelling. The possibility theory is derived from fuzzy set theory. The possibility of the 
object being taken under the fuzzy constraint is numerically equal to its grade of 
membership in a fuzzy set. Mathematically, a fuzzy constraint, denoted FR , is represented 
with a fuzzy set.  

Definition 4 ( ). A fuzzy point is used for spatially modelling a point-like 

vaguely defined geographic entity. A fuzzy point is a coordinate point associated with its 

possibility, denoted . The domain of data type “ ” is a set of fuzzy 

points. Under the fuzzy constraint, the possibility distribution of  performs a 

mapping from  to a unit interval of possibility, that is, .  

pointfuzzy

),,(( Πyxp f ) pointfuzzy

fuzzy

: GSpacep
FRπ

point

[→GSpace ]1,0

Note that the unit intervals of probability and possibility are semantically different. 
The unit interval [0,1] in the definition of a fuzzy object is the range of the possibility of 
object being taken. However, the unit interval [0,1] in the definition of a random object is 
the range of the probability of object’s occurrence.  

For example, the Lausanne train station CFF at  can be modelled as a point 

on the small-scale map. The possibility of the city center of Lausanne being at  train 

station (  is 0.85. Thus, we have the fuzzy point, . 

),( 00 yx

"CFF city), 00 yx )85.0),,((" yxcenter
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Definition 5 ( fuzzy ). A fuzzy line is used for spatially modelling a linear 

vaguely defined geographic entity. Like , fuzzy line can be modelled in 

holistic or reductionistic way.   

inel

inelrandom

In a holistic way, the fuzzy line is modelled as a deterministic line associated with 

the possibility of its being taken under a fuzzy constraint, denoted . The domain of 

data type “ ” is a set of fuzzy lines. Assume that  is a set of deterministic 

lines. Under a fuzzy constraint 

),( Πll f

inelfuzzy LSpace

FR , the possibility distribution of  functionally 

performs a mapping from  to a unit interval of the fuzzy, i.e., .  

inelfuzzy

:l
FRπLSpace ]1,0[→LSpace

For example, we can take bus or metro from the Lausanne train station CFF to the 
university EPFL. For travelers who prefer to walk a scenic road, the possibility of metro 
line being a scenic road is 0.72. In this case, the metro line from CFF to EPFL can be 

modelled as a fuzzy line, .  )72.0,("" EPFLmetroCFFtoEPFLmetroCFFto roadscenic

Alternatively, in a reductionistic way, the fuzzy line is modelled as a set of fuzzy 

points of which the fuzzy line is composed, denoted . ),...,,( 21 fnfff pppl  For brevity, it is 

assumed that fuzzy points on the line are independent and in accordance with the same 
possibility distribution.  

For example, assume that the metro line from Lausanne train station CFF to the 
university EPFL is interpreted from an aerial photo taken over the sky of Lausanne city. 
On a small-scale imagery map, Lausanne train station CFF is interpreted as a fuzzy point 
where the metro line starts. In this case, the metro line from CFF to EPFL is modelled as a 
fuzzy line starting from a fuzzy point “Lausanne train station CFF”. 

Definition 6 ( ). A fuzzy area is used for spatially modelling a vaguely 

defined geographic entity. Likewise, fuzzy area can be modelled in holistic or 
reductionistic way. 

areafuzzy

In a holistic way, the fuzzy area is modelled as a series of λ-level cut sets of the 

fuzzy set, denoted . A λ-level cut set of the fuzzy set is the set of all 

elements whose grades of membership are greater than or equal to “λ”. When λ takes “1”, 
the cut set is interpreted as the interior of the fuzzy set. When λ takes “0”, the cut set is 
interpreted as the exterior of the fuzzy set. When λ takes a certain value from the interval 
(0,1), all boundaries of cut sets constitute a fuzzy boundary of the fuzzy set. The domain of 

data type “ ” is a set of fuzzy areas. Let a set of deterministic areas be a space of 

]})1,0[,({ ∈λλaa f

areafuzzy
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areas or a set of λ-level cut sets, denoted .  functionally performs a 

mapping from  to a unit interval of possibility, i.e., .  

ASpace

urbanizati of

areafuzzy

fuzzy

on})

)( ff la

ASpace

 Lausanne

]1,0[: →ASpacearea

uncertain time

For example, consider Lausanne city as a fuzzy area on the large-scale map, city area 
is gradually growing from the city center into the suburb in degree of urbanization. Here 
the degree of urbanization can be modelled as a level of fuzzy area “city”. Thus, we have a 

fuzzy city, .  degree the area,city  city({the

Alternatively, in a reductionistic way, an area is approximately represented with its 
boundary. Thus, the fuzzy area can be modelled with its vaguely-defined boundary, i.e., a 

fuzzy polyline. In this case, the fuzzy area is denoted .   

For example, on the city map of Lausanne city, the commercial area is vaguely 
defined. It can be modelled approximately with a fuzzy polyline.  

Similarly, uncertain time data types are divided into random time and fuzzy time as 
in Figure 6. Moreover, random time is divided into random instant and random interval, 
and fuzzy time is divided into fuzzy instant and fuzzy interval. Definitions of uncertain 
time data types are given as follows. 
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Figure 6. Uncertain temporal data types 

 modelled as a linear Euclidean space ( I ), denoted .  is a set 

inate points. A time coordinate is granulated with a chronon. Chronon is a 
it of time implemented in the computer (Dyreson Curtis E., et al., 1993). 
y the computer functionality, chronon may be millisecond, second, minute, 
nth, year, etc. The size of a valid time instant may be greater than or smaller 
n. For brevity, it is assumed that a valid time instant is of the same size as a 

of time uncertainty may be: 1) Imprecise dating techniques, e.g., the 
s indeterministic by watch. 2) Planning time, e.g., the completed time of a 
 is uncertain by virtue of unpredicted factors. 3) Forgotten time, e.g., we can’t 
struction time of an ancient building due to the lack of historical documents.  

ion 7 ( random ). A random instant is used for temporally modelling a 

vent stochastically occurred. A random instant is a time coordinate point 

instant
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associated with its probability, denoted . The domain of data type “ random ” 

is a set of random instants.  functionally performs a mapping from  

to a unit interval of probability, i.e., . 

),( Pttr

random

interval

0.56) 

 5, (Dec.

instant

TSpace

),,...,, 21 rnr tt

instant

instantrandom

interval

random

31],:13 15,:

0.8), 4, (Dec.0.7),

instant

),( Πtt f

[0,1]TSpace:instant →

 23,:(10tr

),( Piir

ISpace:intervalrandom

 (Dec.0.7), 6, (Dec.0.9),

TSpace

For example, the travel bus arrives at the foot of the mountain at 10:23 with a 

probability of 0.85. This is modelled as a random instant . 0.85)

Definition 8 ( ). A random interval is used for temporally modelling a 

geographic process stochastically occurred. A random interval may be modelled 
holistically or reductionistically.  

random

In a holistic way, the random interval is modelled as a deterministic interval 

associated with its probability of occurrence, denoted . The domain of data type 

“ ” is a set of random intervals. Let a set of deterministic intervals be a space 

of intervals, denoted .  functionally performs a mapping from 

 to a unit interval of probability, i.e., .  

intervalrandom

ISpace

ISpace

[0,1]→

For example, tomorrow it is raining from 9:15 until 13:31 with a probability of 0.56. 

This is modelled as .  raining([9

Alternatively, in a reductionistic way, the random interval is modelled as a set of 

random instants of which the random interval is composed, denoted . For 

brevity, it is assumed that random instants in the interval are independent and in 
accordance with the same probability distribution.  

( rr ti

For example, the rainy week will begin from Dec. 2 until Dec. 7 with probabilities of 
0.6, 0.7, 0.8, 0.9, 0.7,0.5 respectively. This is modelled as 

. 0.5)) 3, (Dec.0.6), 2, (Dec.rainyweek(

Definition 9 ( f ). A fuzzy instant is used for temporally modelling a 

vaguely defined geographic event. A fuzzy instant is a time coordinate point associated 

with its possibility, denoted . The domain of data type “ ” is a set of 

fuzzy instants. Under a fuzzy constraint, the possibility distribution of 

functionally performs a mapping from  to a unit interval of possibility, 

i.e., .  

uzzy

]1,0

uzzyf

instantuzzyf

:t
FRπ [→TSpace
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For example, the travel bus arrives at the foot of the mountain at around 10:23, more 
precisely at 10:23 with a possibility of 0.93. It is explained that the possibility of bus 
arrival time being 10:23 is 0.93. 

Definition 10 ( ). A random interval is used for temporally modelling a 

vaguely defined geographic process. Likewise, a fuzzy interval may be modelled 
holistically or reductionistically.  

intervaluzzyf

In a holistic way, the fuzzy interval is modelled as a deterministic interval associated 

with its possibility of occurrence, denoted i . The domain of data type 

“ ” is a set of fuzzy intervals. Assume that  is a set of deterministic 

intervals. Under a fuzzy constraint 

),( Πif

intervaluzzyf ISpace

FR , the possibility distribution of  

functionally performs a mapping from  to a unit interval of the fuzzy, i.e., 

.  

intervaluzzyf

ISpace

]1,0[: →ISpacei
FRπ

For example, a marathon running day in Lausanne is scheduled on Nov. 1 with a 
possibility of 0.7. It means that, from 9:00 until 17:00 of Nov. 1, a marathon running race 
will be held in Lausanne with a possibility of 0.7. It is denoted 

.  0.7) 1], Nov. 00,:17 1, Nov. 00,:9marathon([

Alternatively, in a reductionistic way, the fuzzy interval is modelled as a set of fuzzy 

instants of which the fuzzy interval is composed, denoted . For brevity, it 

is assumed that fuzzy instants in the interval are independent and in accordance with the 
same possibility distribution.  

),,...,,( 21 fnfff ttti

For example, a cloudy week will appear from Nov. 11 until Nov. 16 with the 
possibility of 0.2, 0.3, 0.6, 0.8, 0.9,0.1 respectively. That means that the possibilities of a 
cloudy week being the days of Nov. 11 until Nov. 16 are 0.2, 0.3, 0.6, 0.8, 0.9, 0.1 
respectively. This is modelled as: 

0.1)) 16, (Nov. 0.9), 15, (Nov. 0.8), 14, (Nov. 0.6), 13, (Nov. 0.3), 12, (Nov. 0.2), 11, ((Nov.cloudyweek  
In this section, a geographic entity is actually modelled as a random or fuzzy 

spatio-temporal variable. In the computer, the parameters of probability or possibility 
functions are implemented as metadata items. 

 
3.2 NUMERICAL INDICATORS OF DATA UNCERTAINTY 

Basically, probabilistic and possibilistic distributed entities are mainly modelled by 
means of abstract data types, e.g., uncertain spatio-temporal data types. Alternatively, we 
provide users with some statistics of data uncertainty, called numerical indicators of data 
uncertainty. In the computer, numerical indicators of data uncertainty are implemented 
with metadata items. 
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For random spatio-temporal variables, standard deviation or standard error is chosen 
as numerical indicators of data uncertainty. Typically, for spatio-temporal variables or 
objects, there are the error circle for random points, the error band for random lines and 
random areas. For more details, readers are referred to (Zhang Jingxiong, et al., 2002). For 
fuzzy spatio-temporal variables or objects, fuzzy measures can be taken as numerical 
indicators of data uncertainty. For thematic variables, some statistics of contingency table 
are often taken as numerical indicators of data uncertainty. One of thematic data 
uncertainty indicators is PCC (percentage of correctly classified categories derived from an 
image classification error matrix). 

A comprehensive framework for uncertainty model is in the form of: 
Entity 
( 

Identifier,  
  Uncertainty model of spatial, temporal and thematic attributes,  
  Numerical indicators of uncertainty of spatial, temporal and thematic data, 

Operation of data uncertainty, 
) 
In this framework, the identifier of the entity is an unambiguous name or a unique 

alphanumerical string. To a large extent, uncertainty model of spatial, temporal and 
thematic attributes are probability or possibility distribution of attribute values of the entity, 
which are implemented by means of uncertain data types. Numerical indicators of 
uncertainty of spatial, temporal and thematic data for the entity are a set of pairs (indicator 
name, indicator value), which are implemented as metadata. As an example, uncertainty 
modelling of point, line, and area objects are illustrated in Tables 1-3. For brevity, only 
random data types and related uncertainty indicators are presented here.  

 
Table 1. An example for uncertainty modelling of a point 

Data model Metadata model 
Identifier Uncertainty model of spatial attributes 

(Coordinate point, probability) 
Numerical indicators of uncertainty of 
spatial data (Indicator name, indicator value) 

(101.0m, 234.2m) 0.78 

… … 
Metro 
stop 
“Ouchy” (101.5m, 233.8m) 0.81 

Circle standard deviation of the 
metro stop 

0.07m 

 
Table 2. An example for uncertainty modelling of a line 

Data model (line as a set of points) Metadata model 
Identifier Uncertainty model of spatial attributes 

(Coordinate point, probability) 
Numerical indicators of uncertainty of 
spatial data (Indicator name, indicator value) 

(33.31m, 25.02m) 0.89 
(33.02m, 26.23m) 0.91 
… … 

Edouard 
Dapples 
Street 

(89.33m, 68.81m) 0.90 

ε-band width of the street 0.06m 
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Table 3. An example for uncertainty modelling of an area 
Data model 
(area as a set of lines, and line as a set of points) 

Metadata model 

Identifier Uncertainty model of spatial attributes 
(Coordinate point, probability) 

Numerical indicators of uncertainty of 
spatial data (Indicator name, indicator value) 

(6325.21m, 3289.52m)  0.89 
(6325.79m, 3290.01m) 0.88 
… … 

Lake 
Leman 

(6325.21m, 3289.52m) 0.89 

ε-band width of the waterfront line 0.11m  

 

3.3 UNCERTAIN SPATIO-TEMPORAL RELATIONSHIPS 
In theory, Clementini (Clementini Eliseo, et al., 1993) proposed 5 spatial topological 

relationships as a minimum set of topological relationships. (Allen J. F., 1983) proposed 13 
temporal relationships mixing temporal topological relationships with temporal ordering 
relationships, which have gained wide popularity of application in natural language 
processing and the others. Our work is based on Clementini’s spatial topological 
relationships and Allen’s temporal relationships. 

 

 
 
 
 
 
 
 

 

uncertain spatio-temporal relationships

uncertain spatial relationships uncertain temporal relationships

random spatial relationships fuzzy spatial relationships random temporal relationships fuzzy temporal relationships
 

Figure 7. Uncertain spatio-temporal relationships 
 
Uncertain spatio-temporal relationships can be modelled in holistic or reductionlistic 

way. In a reductionlistic way, some functional operators or predicates are provided to users 
for automatically extracting possible spatio-temporal relationships from uncertain 
spatio-temporal objects. In other words, uncertainty of objects is propagated into 
uncertainty of relationships between objects. Since spatio-temporal objects are of various 
dimensions and in a complex structure, extraction of uncertain spatio-temporal 
relationships need to employ tedious algorithms of computational geometry and topology. 
Examination of possible spatial topological relationships existing between indeterminate 
area (region) objects (or say, objects with indeterminate/broad boundaries) has been made 
in (Cohn A. G., et al., 1996; Clementini Eliseo, et al., 1996). As a complementary result, 
here we only discuss the modelling of uncertain spatio-temporal relationships in a holistic 
way. The formal definitions of uncertain spatio-temporal relationships are given as 
follows. 
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Let space of spatial topological relationships be a set of deterministic spatial 

topological relationships, denoted . In the viewpoint of Clementini, we have 

.  

SRSpace

contain_s, }equal_s,overlap_s,touch_sint,disjo_s{SRSpace =

Let space of temporal relationships be a set of deterministic temporal relationships, 

denoted . In the viewpoint of Allen, we have TRSpace = {t_before, t_meet, 

t_overlap, t_start, t_during, t_finish, t_equal, t_finished, t_contain, t_started, t_overlapped, 
t_met, t_after}. It is easily found that Allen’s temporal relationships is a temporal ordering 
refinement of temporal topological relationships {t_disjoint, t_touch, t_overlap, t_contain, 
t_equal}). For example, topological relationship “t_disjoint” is distinguished into 
“t_before“ and “t_after“ disjoints.  

TRSpace

Definition 11 ( random ). A random spatial relationship is used for 

modelling spatial relationships between geographic entities stochastically occurred. A 
random spatial relationship is a deterministic spatial relationship associated with its 

probability, denoted . The probability function of  

functionally performs a mapping from  to a unit interval of probability, i.e., 

. 

pselationshirpatials

)P,sr(srr

SRSpace

],[SRSpace:pselationshi 10→

pselationshirpatialsrandom

rpatialsrandom

Definition 12 ( ). A fuzzy spatial relationship is used for 

modelling spatial relationships between vaguely defined spatial objects. A fuzzy spatial 
relationship is a deterministic spatial relationship associated with its possibility, denoted 

. Under a fuzzy constraint 

pselationshirpatialsuzzyf

),sr(sr f Π FR

]

, the possibility distribution of 

 functionally performs a mapping from  to a unit 

interval of possibility, i.e., . 

ps

,[SRSpace:sr
FR 10→π

elationshirpatialsuzzyf SRSpace

Definition 13 ( random ). A random temporal relationship is 

used for modelling temporal relationships between geographic events stochastically 
occurred. A random temporal relationship is a deterministic temporal relationship 

associated with its probability, denoted tr . The probability function of 

 functionally performs a mapping from TRSpace  to a unit 

interval of probability, i.e., . 

pselationshirtemporal

tr(r

pselationshi

elationshirtemporalrandom

)P,

ps

rtemporalrandom

],[TRSpace: 10→
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Definition 14 ( ). A fuzzy temporal relationship is used for 

modelling temporal relationships between vaguely defined temporal objects. A fuzzy 
temporal relationship is a deterministic temporal relationship associated with its possibility, 

denoted . Under a fuzzy constraint 

pselationshirtemporaluzzyf

),tr(tr f Π FR , the possibility distribution of 

 functionally performs a mapping from TRSpace  to a unit 

interval of possibility, i.e., . 

pselationshi

],[TRSpace:tr
FR 10→π

rtemporaluzzyf

It is evident that how to determine a probability distribution or possibility 
distribution function is crucial for randomizing and fuzzifying spatio-temporal 
relationships. Two simplified methods of computation are taken here. The first one is that, 
joint probability of two objects involved in relationship computation is thought of as 
probability of the relationship (see Eq. 1), and membership associated with intersection of 
two fuzzy objects (subset of points) is thought of as membership (or possibility) of the 
relationship (see Eq. 2). In both cases, we make an assumption that objects involved in 
relationship computation are independent.  

 
1) (Eq.)B(P*)A(P)AB(P)iprelationsh(P ==

 
2) (Eq.)}iprelationsh(),iprelationsh(min{)iprelationsh()iprelationsh( BABA µµµ ==Π Υ

 
In second method, the probability and possibility of the relationship are computed 

through analysis of structures of  and TRSpace . Specify some type of changes, 

such as moving, enlarging, etc., conceptual distance between two relationships is the 
number of nodes of relationships-connected path in a conceptual neighborhood graph of 

 or TRSpace . It is observed that conceptual distance functions implicitly reflect 

structures of  and . Thus, the probability and possibility functions of 

relationships may be derived from some conceptual distance functions. Related studies 
have been somewhat conducted in (Guesgen Hans W., 2001). 

SRSpace

SRSpace

SRSpace TRSpace

 
3.4 MULTI-STAGE UNCERTAINTY RESOLUTION 

With a reference to our taxonomy of uncertainty, geographic information uncertainty 
modelling in MADS is supported at multiple stages of data model, metadata model, and 
interactive software architecture. At the stage of data model, uncertain data types and 
relationships are used. Besides, two special values of uncertainty, “NULL” and “Now”, are 
resolved in a particular way.  

 “NULL” have two semantics, “unknown” and “inapplicable” (Clifford James, et al., 
1995). “unknown” means that, for an attribute, indeed there exists a value of this attribute 
but we are ignorant about its specific value at present. “inapplicable” means that it doesn’t 
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exist any valid value for this attribute at all. In MADS, “unknown” is modelled with 
random data types, and “inapplicable” modelled with fuzzy data types. For example, it is 
unknown that tomorrow’s road traffic is jammed or free. It makes sense of assigning an 
equal probability to alternative status of tomorrow’s road traffic, i.e., roadtraffic{(jammed, 
0.5), (free, 0.5)}. In a layer-based GIS, sometimes a point object and a line object are put in 
the same layer and share the same attribute description table. For example, for a point 
object, the attribute of “length” is apparently inapplicable, of taking the value of “NULL”. 
In MADS, we can model the value of length of a point object with ([min, max], 0). [min, 
max] is the range of lengths of all line objects involved in that layer. “0” is the possibility 
of the point taking any length value in [min, max].  “Now” is a special value of 
uncertainty in temporal databases. In the real word, “Now” refers to current time. In 
databases, “Now” means “until changed”. In MADS, “Now” is implemented as a variable, 
whose value is dynamically computed by a predefined function.   

To make databases plausible, some mechanisms of maintaining data validity and 
completeness and consistency are needed. For human decision-making, it is important to 
reduce uncertainty of invalidity, incompleteness and inconsistency. Thus, some plausibility 
check rules are defined in databases. Traditional database management techniques are still 
effective for data plausibility control. 

At the stage of metadata model, basic numerical indicators of uncertainty are 
specified. Values of indicators of data uncertainty can be computed statically before 
database creation, or be computed dynamically through some simulation methods, such as 
Monte Carlo simulation. 

At the stage of interactive software architecture, computers cooperatively work with 
users for problem solving. Users’ task/requirement analysis and users’ control on the 
computer interface are carefully examined as well as computational models and computer 
feedbacks on users’ input. As explained before, uncertainty is rooted in the differences 
among realistic, computational and human cognitive models. In this sense, uncertainty 
modelling has inherently transformed into effective human-computer interaction. In this 
aspect, a large amount of work about interactive software architecture design can be used 
indirectly for the purpose of uncertainty modelling. 
 
4. RELATED WORK 

Uncertainty modelling is a long-standing research issue in the areas of probability 
statistics and fuzzy mathematics, artificial intelligence and databases, geostatistics and 
error theory, etc. Over a few decades, different theories of uncertainty have been posed, but 
it is still lack of a comprehensive theory of uncertainty. Until very recently, the study of 
generalized uncertainty has increasingly attracted attention of scientists. Among them is 
George J. Klir (Klir G. J., et al., 1997) who has come up with generic principles of 
uncertainty and generic uncertainty measures based on information and decision theory. 
Also, a few taxonomies of uncertainty have been theoretically proposed. Through our 
analysis, the taxonomies of uncertainty proposed in (Smets Philippe, 1991, 1996; 
Bonissone Piero P., et al., 1985; Bosc Patrick et al., 1996) result from semantic 
examination of uncertainty-formalizing mathematics, while Smithson largely concentrates 
on uncertainty concerning social decision (Smithson M.J., 1989). Smithson’s taxonomy of 
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uncertainty is classified into two categories, i.e., status of ignorance (error) and act of 
ignorance (irrelevance). Indeed, it is difficult to make a comprehensive evaluation about 
soundness and completeness of these uncertainty taxonomies. In contrast, our taxonomy of 
uncertainty given in the context of the human-machine-earth system is intentionally served 
as a generic framework for geographic information uncertainty modelling.   

In uncertain spatio-temporal data management, Markus Schneider put forward a set 
of fuzzy spatial data types (Schneider Markus, 1999), where spatial objects are modelled as 
a set of points and fuzziness modelled by means of memberships. This is somewhat 
different from our methods of holistic spatial objects modelling and possibility-based 
fuzziness modelling. Holistic spatial objects modelling is complementary to reductionistic 
modelling of spatial objects being the sets of points. And possibility-based fuzziness 
modelling is advantageous in computability over membership-based fuzziness modelling. 

For uncertain spatio-temporal relationships modelling, Guesgen suggested to fuzzify 
spatio-temporal relationship with characteristic functions (membership functions). In 
Guesgen’s work, traditional spatial and temporal relationships are thought of as a set of 
deterministic spatio-temporal relationships. Essentially, this is our holistic idea of uncertain 
spatio-temporal relationships modelling. By using 9-intersection algebraic theory and RCC 
logical method, Cohn A. G. and N. M. Gotts, Clementini Eliseo and Paolino Di Felice have 
addressed the possible set of spatial relationships existing between vague spatial regions. 
Basically, this is our reductionlistic idea of uncertain spatial topological relationships 
modelling, since uncertain spatial relationships are reduced to two related vague spatial 
objects. Thus, our solution could be said to be a combination of holistic and reductionlistic 
ideas of uncertain spatio-temporal relationships modelling. 

 
5. CONCLUSION 

Two parts of work have been carried out in this paper. Firstly, we attempt to explore 
the nature of uncertainty in a broad sense. It is stated that geographic information 
uncertainty may arise from the complexity of the human-machine-earth system in general, 
and the differences among human cognition, computer representation and geographic 
reality in particular. In this view, a taxonomy of uncertainty is proposed for further 
clarifying semantics of uncertainty.  

Secondly, we have studied how to deal with uncertainty in MADS. Inspired by the 
theories of stochastic and fuzzy geometry (topology), methods of probabilistic, fuzzy and 
statistic databases, primary uncertain spatio-temporal data types and spatio-temporal 
relationships are formally defined. Innovatively, an idea of multi-stage uncertainty 
resolution is given. 

However, our proposed uncertainty model is still at an initial stage. For example, 
uncertain behavior modelling, including uncertainty propagation, is less discussed. All 
uncertain data types are defined based on the assumption of simple spatial objects at a 
single granularity. The assumption of probabilistic and possibilistic independent objects 
with the same probability and possibility distribution has been made throughout this paper. 
This certainly restrains MADS from flexibly modelling geographic spatio-temporal 
information uncertainty. Last but not least, it is noteworthy that our proposed taxonomy of 
uncertainty may be incomplete in theory. This is related to our ideas on the one hand, and 
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influenced by the statements of natural language on the other. It is well known that natural 
language is of sense ambiguity. Moreover, philosophically speaking, even a complete 
system of mathematical axioms is incapable of being proved by itself. 
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