

XML-BASED WebGIS PROTOCOLS*

LUO Yingwei, LIU Xinpeng, WANG Xiaolin and XU Zhuoqun

Dept. of Computer Science and Technology, Peking University, Beijing, P.R.China, 100871

ABSTRACT

Aiming to the features of complex objects and massive data transmission, a new
XML-based method to design and implement communication protocols for WebGIS is
presented. The paper illustrates the mechanism in designing communication protocols
following W3C’s XML Schema specification, as well as provides main flow to embed
them into WebGIS by packing and parsing XML-based protocols. This kind of protocols
can be used in spatial information exchange among heterogeneous platforms of in
distributed environment.

KEY WORDS: XML, XML Schema, WebGIS, Protocol

1 INTRODUCTION

WebGIS uses network to distribute geographical information and relevant disposal. It
is the outcome of object-oriented software component technology and information
interoperation technology, as well as the development of network technology. Nowadays
international studies on WebGIS software technology focus mainly on several facets, such
as spatial data model, spatial data structure, organization and management of spatial
information, communication protocols, distribution strategies of spatial information and
services, and so on. The facet discussed in this paper is the subject of the communication
protocols for WebGIS [1].

The Communication Protocols for WebGIS generally lies in two kinds: control
command protocols and spatial data transmission protocols. Figure 1 illustrates the
distributed computing model for WebGIS.

* Corresponding author: LUO Yingwei, lyw@pku.edu.cn.

1

mailto:lyw@pku.edu.cn

Web Server

WebGIS
Server

Data
Packing

Transmissible Data
(Byte Stream) Internet

Web Client

WebGIS
Client

Data
Unpacking

Transmissible Data
(Byte Stream)

Figure 1 the Distributed Computation Model for WebGIS

The description of control command using parameter frame needs cautious definition
for protocol format and different implementation for parsing corresponding protocol, so it
does not own the common usage. For example, a parameter frame of a data request
protocol may have the definition as following:

Requ

estUser

Reque

stTime

RequestWhol

eLayer

Ma

pName

Nee

dIndex

I

ndexID

Other

Field…

But in fact, the protocol requesting a layer of “Traffic Lines” always is filled just as
following. There are too many null fields.

“lx

p”

2002/6/

10

T

rue

“Traffic

Lines”

F

alse

N

ull

Null for Other

Fields

XML can be used conveniently to describe the concept model of inclusion
relationship. Additionally, it can directly express the concept model in an understandable
way, and the expression format is so flexible that it seldom suffers the limitation which
parameter frame does. While describing protocols by XML, we can not only give a
common format for data and control commands, but also reuse the existing XML parsers,
so as to facilitate the expansibility and integration of protocols in a system.

At present there already has precedents that used XML to express communication
protocols. In the Web server based data release platform - ArcIMS, ArcInfo had already
used ArcXML as the fundamental command and data transmission protocols to
communicate between users’ web pages and backend spatial data servers [2]. More worthily
mentioned, W3C had proposed Simple Object Access Protocol (SOAP) 1.1[3] in May, 2000,

2

which is a light weight protocol based on XML used to build information exchange
framework under distributed environments. Our idea of XML based communication
protocols for WebGIS benefits from the SOAP model, but we basically focus on the
application in WebGIS.

2 ANALYSIS OF WebGIS COMMUNICATION PROTOCOLS

2.1 Analysis of Applet Based WebGIS

In order to better analyze the communication protocols for WebGIS, we have
developed a WebGIS prototype system that provides simple applications using the
platform-independent language – Java. This system consists of three parts: Applet,
WebGIS server and data server, as showed by Figure 2.

Web Browser

WebGIS Server
WebGIS Client

Network WebGIS
Spatial
Databases

Web Server

GIS Server
Data Server

Web Page
Applet

Figure 2 Applet Based WebGIS Architecture

Data server provides the interface for WebGIS to access to spatial databases. WebGIS
server is responsible for listening any requests from client and building connections with
legal users. GIS server has special database access modules that are responsible for
accomplishing interactions with data server and retrieving data information that users
request. WebGIS server also integrates several modules related to analysis and disposal of
GIS data, such as topological analysis, shortest path analysis, overlay analysis, data
conversion and so on. In this way, more complex GIS data disposal tasks will be
accomplished at WebGIS server side, while only fundamental map manipulation functions
are remained in applets. Such mechanism guarantees a small and exquisite WebGIS client
while applets are being downloaded and running, and in the end we can implement “Thin
Client”. By embedding applets into web pages and providing many kinds of interaction
interfaces together, WebGIS users may fulfill many kinds of spatial manipulation
functions.

 During the whole interaction process of WebGIS, applets perform as a key role.
Through encapsulating fundamental GIS functions into applets, we can build a series of
special function-oriented applets as toolkits, such as map visualization applet, topological
analysis applet, feature query applet, etc. By means of redefinition to mouse events
inspired from these applets’ interfaces, users could refactor these applets using languages

3

such as Java Script, just like we do to the components.

While applet is running, user’s requests and responses from Web server form the basal
interactive transactions. These transactions will all be expressed by communication
protocols for WebGIS. In order to accomplish elementary GIS interactive functions
provided by applets’ interfaces, both client and server have to compartmentalize the details
of requests and replies, define a pretty protocol specification, so as to obtain high
efficiency and accurate interactions. That is because of:

! In order to utilize network band to a further extent as well as enhance the
interactive concurrence of the system, careful analysis on protocol content should
be paid for fundamental transactional interactions in WebGIS. Then give strict
format by protocol contents, so as to define high quality request and reply
patterns.

! The communication protocols for WebGIS have an obvious structure of
hierarchy, so traditional protocol format (parameter frame) may result in a rather
complex protocol set carried with too many redundant linear fields, and leads to a
complex protocol development and a decline of communication efficiency. So
defining a new protocol specification becomes an urgent problem.

! The communication protocols for WebGIS should have flexibility to be
easily updated or changed. Also, the new protocol specification should take
account dynamic scalability of the protocols.

! After analyzing fundamental interactions in WebGIS, we have discovered
that the communication protocols for WebGIS possess a typical tree-structure,
thus they can be conveniently modeled by class hierarchy and normalized by
formal UML diagrams. Class inheritance and composition mechanism provide
favorable structural support to expand the protocols, so it is possible for us to
define a bran-new protocol specification.

Interactions between users and WebGIS client determine main contents of the
communication protocols for WebGIS. The following two sections show detailed
illustrations of client request and server reply protocols as well as formal descriptions by
UML diagram.

2.2 Illustrations of WebGIS Request Protocols in UML

In the prototype system, modules such as map manipulation and entity query are
contained inside applets. So the communication protocols for WebGIS is mainly
responsible for requests and replies of map data. A map consists of several layers, and the
basic request is to ask for a layer. There are different ways to request a layer, which mainly
include:

! Requesting a layer by providing the layer’s name, this is the most basic
way;

4

! Requesting a layer by specifying the layer’s redirection address;

! Requesting a block of geometry entities in a layer by providing a spatial
index sub tree;

! Requesting a block of geometry entities in a layer by specifying a spatial
range.

According to above analysis on primary contents of layer request, figure 3 presents
the UML descriptions of map data request protocols for WebGIS.

Figure 3 UML Descriptions of Request Protocols

Each request starts from root class Requests, which acts as a container of series of
Request. Class Request should have an id, as well as a time recording the request time.
Class LayerRequest derived from Request denotes that the current protocols we designed
only contain layer request. Every LayerRequest should contain a necessary attribute name,
which indicates the layer name. As described above, there are four classes corresponding to
four request ways - GetLayer, GetRedirection, GetSpatialIndex and GetEntities, all
derived from LayerRequest.

! GetLayer will retrieve whole layer data identified by the layer name;

! GetRedirection needs a member class Redirection to provide the
redirected data address redirection;

! GetSpatialIndex needs a spatial index sub tree, which is used to express
index description of a block of geometry entities that users request in a layer. The
spatial index sub tree is built up by basic tree node SiNode, which could be just a
leaf node SiLeaf with the attribute recursive identifying its recursive tiers, or may
be another sub tree with the attribute entry identifying the entry for each non-leaf
node in it.

! GetEntities needs member class Condition to describe users’ restriction

5

for entities in a layer. The restriction is expressed by Expression, which may
either be True which denotes no restriction, or be an Inside specifying a spatial
range by Box.

2.3 Illustrations of WebGIS Reply Protocols in UML

Aiming at above specification of WebGIS request protocols, replies from server may
have a corresponding design, which mainly include:

! For GetLayer request, which is determined only by the layer name, the
reply is whole layer data of the layer.

! For GetSpatialIndex request, the reply is corresponding spatial index sub
tree with each node carrying with index information;

! For GetEntities request, the reply is all information of geometry entities
located in the specified spatial range or a redirected address of some fields of
those entities;

! For GetRedirection request, the reply is simply a redirected address, and
redirected data will be retrieved by corresponding disposal modules of server;

! For the request of getting a single field of geometry entities, the reply is a
redirected address of the field of those entities.

Figure 4 illustrates the class hierarchy of the reply protocols in UML diagram.

Figure 4 UML Descriptions of Reply Protocols

Just like the request protocols, class Replies is a container of Reply, which can

6

represent different replies from server. Class Reply must have an id to identify itself,
meanwhile it must specify the reply-to object by replyto, and use hasmore to denote
whether there are still other replies or the current reply is the last one. There are five
concrete classes of replies inherited from class Reply: ReplyGetLayer,
ReplyGetSpatialIndex, ReplyGetEntities, ReplyRedirection and ReplyField.

! ReplyGetLayer is a reply to GetLayer, which includes basic information
of required layer: layer name, layer extent, default entity Color, map scale and
entities;

! ReplyGetSpatialIndex is a reply to GetSpatialIndex, which contains a
spatial index sub trees with tree nodes (leaf or non-leaf) of type SiNodeData. Each
node lists its entry and the range of its sub tree (extent);

! ReplyGetEntities is a reply to GetEntities, which is an Entities
containing a list of Entity that satisfy request restriction. Each Entity has an id to
identify itself and marks its range by extent. A Fields depicts detail information of
an Entity. Fields records a list of redirection information for different Field of
Entity. Field can be embodied as eight classes: BianaryField, BlobField,
ClobField, GeometryField, ObjectField, StringField, NumberField and
DateField.

! ReplyRedirection is a reply to GetRedirection, which contains a
Redirection specifying redirected address by string redirection;

! In addition, ReplyField could be used to directly provide the reply of the
request of getting a certain field of geometry entities.

3 IMPLEMEMENTING XML-BASED WebGIS PROTOCOLS

When proposing definitions of XML Schema for the protocols, we also define
metadata for the protocols. Using metadata to normalize the protocols may define basic
expressions of the protocols at pattern-abstract level of data. The rewrite of metadata can
accomplish the redefinition of a set of protocols, which is useful to the update and
expansion of a certain set of protocol.

3.1 Defining XML Schema (Metadata) for the Protocols

We can conveniently convert class hierarchies in UML to corresponding expressions
in XML Schema. The conversion is usually based on the following rules [4][5][6](for the
limitation of length, detailed XML Schema of request and reply protocols can be obtained
at: http://gis.pku.edu.cn/Projects/WebGIS/protocol/):

! A class in UML has a counterpoint - a complex type in XML Schema.
The classes in UML may be divided into two kinds: abstract class and
non-abstract class. An abstract class usually generalizes common attributes and

7

http://gis.pku.edu.cn/Projects/WebGIS/protocol/

methods of those classes inherited from it, but itself cannot have an instance. In
XML Schema, the abstract attribute is used to identify corresponding complex
type of abstract class;

! Attributes of class in UML is equal to those of corresponding complex
types in XML Schema;

! Class inheritance in UML is denoted by the value of base attribute, which
is an extended mark in XML Schema. The value specifies the type of base class in
an inheritance chain;

! Member class in UML is expressed by nesting sub-element, which is a
complex type in XML Schema.

3.2 Validator for the Protocols

3.2.1 Application of Validator in Transmission of WebGIS Protocols

One of the main aims of using XML Schema to describe communication protocols for
WebGIS lies that, utilizing the metadata describing capacity of XML Schema to XML
documents, a common XML Schema based XML document validator can be used to
automatically perform validity checking of XML based communication protocols. The
validator can be regarded as a process switch at both client and server side during the
transmission of the protocols. In order to enhance system efficiency, we adopt following
premises:

! Reply protocols from server side are usually considered to strictly follow
XML Schema definition above, so when client side receive the reply, it is allowed
to close validation switch and directly perform parsing XML based protocols;

! Familiar and friendly clients will be recorded at server side. The
protocols sent from there are also usually considered to strictly follow XML
Schema definition, so when server deals with these requests, it is allowed to close
validation switch and directly perform parsing task;

! A new client must experience a certain phase to win the confidence of
server. During this phase, server must check request protocols sent from the new
clients, so as to avoid unnecessary waste of parsing resources that is brought by
protocols with mistakes.

3.2.2 Work Flow of Validator

Work flow of validator is expressed in Figure 5. Our system used DOM (Document
Object Model) to parse XML Schema of the protocols and themselves. Although using
XML Schema to check validity of the protocols guarantees parsing them later correctly, but
the work flow is very complex and time-consuming, so validity checking is executed only

8

when it is highly required.

XML-based
protocols

XML Schema
for protocols

Download

Parsed by
DOM

Parsed by
DOM

Non well formed
protocols,

fail to validate
Right structure

and obtain a DOM
tree for protocols

Obtain a type tree
of XML Schema

Existing
unmatched items,

Fail to validate

All items matched,
Success to validate

Item
validation

Figure 5 Work Flow of XML Schema-based Validator for Protocols

3.2.3 Elementary Validation Items in XML Schema of the Protocols

! Check for nesting structures of an element type

The primary method to implement checking for nesting structures of an element type
is: starting from root of the DOM tree of a protocol and root of the type tree of its XML
Schema, and using depth-first search algorithm to check each node of DOM tree using the
node information of corresponding type tree. This work is the framework of following
validation items. During traversal of the trees, each node should have following items
checked.

! Check for element name

All element names occurring in the DOM tree should have corresponding type
definitions in the type tree of XML Schema. Additionally, because of the match case
feature, the name of each element in the DOM tree must match case with corresponding
definition in the type tree.

! Check for attribute inheritance and the use attribute

The construction of the type tree facilitates checking for attribute inheritance. What
validator should do is to match attribute list of element node in the DOM tree with attribute
list of corresponding element definition in the type tree. While matching, we should verify
whether required attributes presented in expression of the protocols, whether attribute
names and attribute types matched. Required attributes are denoted by value of the use
attribute in XML Schema, which are also recorded in the type tree.

! Check for occurring times (the minOccurs, maxOccurs attributes) of an
element

Validator maintains a counter for each element in the DOM tree, and during traversal

9

of the DOM tree, the counter will record actual appearance times for an elements. At last,
the appearance time is compared with the corresponding number defined in the type tree. If
mismatch, a protocol will be considered invalid.

! Check for content arrangements (the sequence, choice, all attributes) of a
complex element

Content arrangements supported by XML Schema include sequence, choice and all.
In the type tree of XML Schema, sequence, choice and all will present as an independent
node. Validator will produce an element chain for their children of these three nodes, and
use the appearance order and appearance times of corresponding elements to perform
checking.

3.3 Packing into XML and Parsing to Objects for the Protocols

By defining XML Schema for the protocols, we can present their metadata. By
implementing XML Schema based validator, we can guarantee the correctness of the
protocols before transferring them by HTTP. But if we wish to embed XML-based
protocols into WebGIS, we should have concrete request or reply protocols packed from
object set into an XML stream as well as parsed from XML stream back into object set at
both client and server side.

3.3.1 A Simple Request Conversation

Figure 6 describes a sample for conversation flow of packing and parsing the
protocols. A user launches a request of get layer “Traffic Lines of Beijing”. Firstly, an
object tree for the protocol (GetLayer) should be constructed the in the memory using
UML class descriptions. After packing the object tree into XML, we get an XML character
stream that satisfies XML Schema specification of GetLayer. The stream arrives to server
side through Internet connection between C/S, and then is reconstruct to an object tree.
After that, server recognizes the request is a GetLayer request, and dispatches to
GetLayer-processing module. GetLayer-processing module queries database by attributes
of GetLayer to retrieve the layer “Traffic Lines of Beijing”.

10

Internet

Web Browser Web Server

Requests

GetLayer

Id:1 Time:
84389

Name:
Traffic Lines

Pack
XML-based
protocols

<?xml version="1.0" encoding="UTF-8"?>
<Requests>

<GetLayer id=“1” time=“84389” name=“Traffic Lines”>
</GetLayer>

</Requests>

Transfer stream of XML-
based protocols using http

Launch
requests

Send
protocols

Receive
protocols Dispatch

requests

Figure 6 Packing and parsing of XML-based Protocols for WebGIS

Parse
XML-based
protocols

3.3.2 Packing into XML

Packing the protocols into XML exists in protocol-processing modules at both client
and server side. At client side, request events from applets triggered by users are captured
and stored as object trees. Object trees of requests are instance set of Java classes designed
by UML diagrams for the protocols. It acts as middle interface between user requests and
XML construction of the protocols, and is an important part in embedding XML-based
protocols into WebGIS. At server side, result data of each processing module and reply
information also need to be stored as object trees, and then are packed into an XML
character stream and sent back to client side.

The packing process is simple, which is similar to the conversion of UML diagrams
into XML Schema of the protocols. The difference is that the latter accomplishes the
mapping of objects to XML syntax at metadata level, while the former does a same thing at
data level.

3.3.3 Parsing to Objects

A complete conversation from client to server and then back to client must include the
converse process of packing the protocols into XML - parsing the protocols to objects. It
also exists in protocol-processing modules at both client and server side. From the
viewpoint of implementation, parsing the protocols to objects is similar to validating the
protocols. Firstly, it is needed to interpret the received XML stream of a protocol to a DOM
tree by XML parser, and then retrieve parameters of the protocol from the DOM tree,
assemble them back into an object tree of the protocol.

As described above, packing and parsing the protocols embody the integration of
XML-based protocols in WebGIS. These guarantee the scalability of the protocols and the

11

integrality and validity of conversation between client and server at implementation level.

4 SCALABILITY AND LIMITATION ANALYSIS

4.1 Structural Characteristics of the Protocols

From Figure 3 and Figure 4 we discover that, the structure of communication
protocols for WebGIS possesses favorable scalability because of the usage of class
inheritance and composition:

! The encapsulation of attributes and methods of object-oriented
mechanism guarantees stability of protocol modules. In fact, an update to internal
attributes of one class does not affect any other classes, while previous linear-field
based protocol frame does not possess such advantage: an addition or deletion of
one field will lead to a series of offset changes to other fields and redesign of the
disposal process;

! Class inheritance gives a high level generalization of a set of similar
requests or replies. Class inheritance distills common attributes to make protocol
expression concise. During early phase of implementation, the protocol set may
receive many expansions with the extension of applications and the refinement of
the functions. The action to add a new inherited class is independent to any other
brother classes, which keeps the validity of the existing protocols to an extreme
extent. For example, to add a new class mapRequest inherited from abstract class
Requests only needs to define mapRequest itself.

! Class composition expresses concrete content of a request or a reply,
where alteration is taking place frequently. Using fundamental class structures is a
very flexible way. When we wish to reference or change the content, the only
thing we should do is to alternate the member classes of a request or a reply. Here
is a convictive example: very complex communication protocols for WebGIS may
include request like MultiLayerRequest, which may request several layers in a
map at one time. MultiLayerRequest will be used to do overlay analysis on
relevant layers at client side. MultiLayerRequest inherits from Requests, so it
should have a LayerRequest as its member class, although it may contain some
other attributes to identify relationship among requested layers. Here,
MultiLayerRequest can achieve reference to whole structure of LayerRequest
only using LayerRequest as its member class.

4.2 Application Limitations of the Protocols

The limitations of XML-based communication protocols for WebGIS result from the
structural disposal of XML character streams.

Comparatively powerful parser for XML is DOM, which can interpret an XML

12

document to an object tree. We can conveniently use methods of DOM to retrieve element
names, element attributes, and text contents from XML document.

We use Java package for DOM in our development. While due to the huge size of the
package and the relative low version Java cores embedded in the Microsoft IE, WebGIS
client is forced to download the package so as to correctly perform protocol parsing and
packing. This weakens the tendency to implement a thin client. So application of DOM to
client is confined. Presently the feasible solution is as following:

! In client, we can use another XML parser – SAX (Simple API for XML)
to perform parsing task. SAX is rather smaller than DOM, and provides the power
to identify beginning mark, ending mark, text mark and other parts of each
element in an XML document. It also provides event redefinition interfaces to
implement element parsing. Compared with DOM, the power of SAX is much
weaker: it couldn’t identify whole nesting structures of elements in an XML
document, but only defines common event interfaces for all elements. For
developers, they should deal with events themselves to let SAX reach a similar
function of DOM;

! We can also directly convert XML character streams at client side. That is
to say, taking each protocol object as a unit, we emit corresponding XML string of
the object into output stream of connection according to XML specification and
the XML Schema formats for the protocols. Because classes related to the current
protocols almost have a mapping to XML elements and its number is not so large,
this way is feasible. But with the expansion of the protocols, the complexity will
sharply raise if we can’t find a suitable alternate tool for DOM.

5 CONCLUSIONS

Combining with application backgrounds of WebGIS, this paper proposed a basic
thought of expressing communication protocols for WebGIS using XML. The primary
work we have done in this paper includes:

! Presenting fundamental framework and UML descriptions of requests
and replies protocols for WebGIS;

! Based on XML and XML Schema, Implementing transform of protocols
from UML description to their definition of XML Schema;

! Giving a concept of implementing protocol-relevant validator;

! Indicating roles of XML packing and parsing during the whole process of
protocols for WebGIS by an instance;

! Analyzing advantages and limitations of XML-based communication
protocols for WebGIS.

We have already implemented basic map manipulation functions at client side in

13

prototype system. Figure 7 is a screen shot of the system at client side. At the same time of
map visualization, XML-based communication protocols for WebGIS are printed out in
below text field.

Figure 7 A Demonstrative Screenshot of Prototype System at client side

XML-based communication protocols for WebGIS are proposed as a new design
concept and have been given an elementary implementation, but up to date the protocols
could only perform simple C/S interactions, and the further work includes:

! Studying the details of communication conversation for WebGIS based
on the protocols, and implementing multi-interactions during one transaction;

! Implementing concurrent transmission, correct interception and dispatch
of XML protocol streams at both client and server side, so as to improve
communication efficiency of the system;

! Taking account of the requirements of further development at WebGIS
client side using applets, to expand and define highly flexible protocol sets as well
as to accomplish definition of XML Schema metadata;

! Refining protocol validator mechanism using common XML Schema
based validator for XML.

14

ACKNOWLEDGEMENTS

Supported by the National Natural Science Foundation of China under Grant Nos.
60030005, 60073016, 60203002; the National High Technology Development 863
Program of China under Grant Nos. 2001AA113151, 2002AA135330, 2002AA134030;
the National Grand Fundamental Research 973 Program of China under Grant No.
2002CB312000; the National Research Foundation for the Doctoral Program of Higher
Education of China under Grant No. 20020001015; the Natural Science Foundation of
Beijing of China under Grant No. 4012007.

REFERENCES

[1] Li Muhua (2000). "Study and Implementation of WebGIS as a Component System"
[Master Dissertation] (in Chinese). Beijing: Peking University, 2000.5

[2] ESRI (2001). ArcXML Programmer’s Reference Guide (ArcIMS 3), PDF on CD only,
2001.4.

[3] W3C Note (2000). "Simple Object Access Protocol (SOAP) 1.1",
http://www.w3.org/TR/SOAP, 08 May 2000.

[4] W3C Proposed Recommendation (2001). "XML Schema Part 0: Primer",
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330, 30 March 2001.

[5] W3C Proposed Recommendation (2001). "XML Schema Part 1: Structures",
http://www.w3.org/TR/2001/PR-xmlschema-1-20010330, 30 March 2001.

[6] W3C Proposed Recommendation (2001). "XML Schema Part 2: Data types",
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330, 30 March 2001.

15

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330
http://www.w3.org/TR/2001/PR-xmlschema-1-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330

	XML-BASED WebGIS PROTOCOLS*
	INTRODUCTION
	ANALYSIS OF WebGIS COMMUNICATION PROTOCOLS
	Analysis of Applet Based WebGIS
	Illustrations of WebGIS Request Protocols in UML
	Illustrations of WebGIS Reply Protocols in UML

	IMPLEMEMENTING XML-BASED WebGIS PROTOCOLS
	Defining XML Schema (Metadata) for the Protocols
	Validator for the Protocols
	Application of Validator in Transmission of WebGIS Protocols
	Work Flow of Validator
	Elementary Validation Items in XML Schema of the Protocols

	Packing into XML and Parsing to Objects for the Protocols
	A Simple Request Conversation
	Packing into XML
	Parsing to Objects

	SCALABILITY AND LIMITATION ANALYSIS
	Structural Characteristics of the Protocols
	Application Limitations of the Protocols

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

