
The Study on Dynamic Topology Based On Land Use Management
 Hou Yanping Fan Hong

Abstract The thesis puts forward data structure and algorithm of dynamical topology
that are based on the studies of traditional static topology. Then an appropriate model and a
practical algorithm are designed to solve all sorts of problems that are confronted with in
Land Use Management.
Key words Land Use Management，static topology，dynamical topology，
topological arcs reference arrays，topological alteration-processing model

Abstract The advent of topology in land use management has revolutionized the way that
work efficiency is increased in traditional work by hand. Traditional topology has such
function that it can create and handle spatial relationships between points, lines and
polygons whole at a time no matter changes how small. It is called as static topology.

With the improvements in applications, traditional mode hasn’t met the needs of
current development better. In many practical applications, such as rural land sift, urban
cadastral management, country investigate in utilization, figures and attributes of land
subdivision have changed more frequently, however, involved range is not wide enough to
adopt static topology because of bad efficiency. At the same time, it is difficult to sustain old
and new data of figures and attributes. It’s a good idea that after edit and modify of some
local geographic objects, corresponding objects’ topological relationships have been
modified merely. It is called as dynamical topology.

Dynamical topology has such function that after static topology, if some figures or
attributes of some local geographic objects are edited and modified, it can create and handle
spatial relationships between points, lines and polygons only between ones that have been
modified or that influenced by modified ones. Relationships wouldn’t be sustained or
modified entirely any more. In this mode, one hand is spatial point of view that the objects
which are handled by dynamical topology are local geographic objects which are really need
to change the topology, and the other hand is temporal point of view that the process which
the spatial relationships have been established dynamically is a dynamically commutative
one between users and systemic data.

Consider the data process models and interrelated data structures and algorithms from
before.

 1

I Data Process Model of Dynamical Topology

Lets talk about spatial and temporal point of view first.
Spatial point of view is that: If changes have happened on figures or attributes in some

graphics, the relationships between geographic objects don’t need establishing entirely any
more. Only partial ones that have been modified or that influenced by modified ones need
reestablishing again. The data don’t need submission whole any more. Only corresponding
objects’ ones need submission. In order to meet the expectation, efficient index structure
should be established to realize searching partial objects within the whole region quickly
and smoothly. Among R-tree index, grid index, quad-tree index, octagon-tree index, the
algorithm of grid index is the easiest, and the relationships between points and lines are
emphasized mainly by it. Besides, Minimum Bounding Rectangle of arcs and polygons can
well serve the searches and calculates of the corresponding objects.

Temporal point of view is that: Process temporal describing and managing of partial
topological relationships. Dynamical topology is that it can create and handle spatial
relationships between partial basic topological features. Such as a series of the adding,
deleting, moving, uniting or splitting ends, vertices, nodes of arcs or polygons, etc. They are
stored orderly, and so, complex topological changes can be divided into a series of simple
operations on topological features, which can be described in accordance with the sequence
of operations.

After partial topological features have been changed, the operations that result in
topological relationships changes can be divided into several simple ones and finished by
steps and by stages. The operations, such as adding, deleting, moving, uniting or splitting
ends, vertices, nodes of arcs or polygons, etc. can’t result in intersections. Otherwise the
changes have to be finished immediately and automatically. It is called as systemic
submission, which can be compared with the user submission that users finish the changes
initiatively. During the course of operations, the operated objects and operations manners
are recorded in accordance with the sequence of operations schedule. At the same time,
partial topological relationships (mainly node-arc relations) are sustained or modified
successively. And after hours, the whole process of topological changes are sustained or
modified in sequence of recorded ordinal operations schedule.

It is obvious that the models involved in establishing topological relationships are the
topological alteration-processing model besides node-arc-polygon model of traditional static

 2

topology and grid model of spatial index and relational model of database etc. The
topological alteration-processing model has high demands in data structure and algorithm,
such as the fleetly searching of ends, vertices, nodes, arcs and polygons, etc. and the
recording the operated objects and operations manners during the course of topological
changes in order to sustain or modify the relationships between the topological features.

II Data Structure of Dynamical Topology

The data structure and algorithms of dynamical topology are based on the studies of
traditional static topology, of cause, they need improve on, such as in order to meet the
expectation of dynamical topology, information changes on relevant points, arcs and
polygons should be better recorded in traditional static topology. For example, topological
points reference, topological arcs reference arrays, minimum-bounding rectangle of arcs and
polygons, directional arc-lists of polygons etc. For example, the reference of each end on an
independent and unclosed arc is 1, and information of the arc is stored in topological arcs
reference arrays. To each vertex on arcs, the reference is 2 and no information is stored in
topological arcs reference arrays in order to simplify the data structure and avoid redundant
data. To the ends on a closed arc, the each reference is 2 too because they are same one and
the information of this closed arc is stored in topological arcs reference arrays. To each node
on arcs, the reference is no less than 3 and the information of all arcs whose head or tail is
the node is stored in topological arcs reference arrays.

In addition, during the dynamical topological alteration processing the operations on
ends, vertices, nodes, arcs or polygons will stand a good chance to result in adding, deleting,
splitting, uniting or modifying polygons, and even probably have an effect on parent-child
relationships between polygons, that is, inclusive relationships or insular relationships
between polygons. Record the sequence of operations during the dynamical topological
alteration processing, and modify or sustain the parent-child relationships after the systemic
submission.

III Algorithms of Dynamical Topology

Because all polygons are composed of points and arcs, the operations on polygons can
also be composed of the sequence of the ones on points and arcs that are composed of them.
Great concern on data structure and algorithms of dynamical topology should be made just

 3

for points (including independent points, ends, vertices and nodes) and arcs in adding,
deleting, moving, splitting and union.

■ Modify Arcs

That is operations on arcs adding, deleting and moving wholly etc.

● Adding
◆ Arcs adding can’t result in intersections with other topological features.
In this condition, it is perhaps adding an isolated line that can add the arc to the

systemic arc set. Also perhaps adding a closed line that not only need to add the arc to the
systemic arc set, but add the new polygon which is composed of by it to the systemic
polygon set as well. At the same time, the operations should be recorded in order to sustain
or modify parent-child relationships between polygons after the systemic submission.

◆ Arcs adding result in intersections with other topological features.
There is a restrictive qualification with this understanding, that is, it is allowed to make

it closed but not to make it intersect by itself. This line can be cut into several parts, which is
called as arcs. Then add these arcs to the systemic arc set one by one, and sustain or modify
relationships correspondingly.

As can be seen from Figure 1: Add line ACE to arc set, and it makes intersect with
polygon FGHLMNF. Line ACE is cut into arcs AB, BCD and DE. And add them to the
systemic arc set one by one, then split the polygon FGHLMNF into polygon BCDGFB and
BCDHLMNB.

 4

 FIGURE 1 Adding Lines

Consider the pseudo code example from before: The procedure can be separated into

two parts.

PROCEDURE 1：Add arcs that are cut into parts to the minimum arc
arrays.

INPUT: New Arc List added listPt
The Systemic Arc Set
CArray<TArc*,TArc*> m_ArcArray

OUTPUT: the point sets that make of minimum arcs
CArray<TPoint_tp*,TPoint_tp*> NewPtArray
The Minimum Arc Arrays
CArray<TArc*,TArc*> AddArcArray

STEP 1：Find the first point (i.e. head) of the new added line.

TPoint_tp* pPtPre = listPt.GetHead()
 Keep point pPtPre stored into NewPtArray.

Traverse the list (listPt) sequentially from the second point, and constitute the
line segment pLine with the previous one.

STEP 2：Determine whether pLine intersects the each arc that is taken out of the systemic
arc set (m_ArcArray) sequentially. First, determine whether the minimum-
bounding rectangle of pLine intersects the one of the each arc that comes from
the systemic arc set sequentially. If doesn’t intersect, go continuously to the next
one. If does, insert the intersections to the arc that is used to be compared with,
and store them to the NewPtArray. After hours, the arc is cut into several new
segments in term of intersections. Then add them to the m_ArcArray. The Left-
Polygon and Right-Polygon will succeed the ones of the old arc.

STEP 3：Sort by size of distance from the points both on NewPtArray and pLine to the
head of the list pLine, then put them to the NewPtArray over again.

 5

STEP 4：Go to the step 1, and constitute a segment with the previous one and the next one
from listPt. Then go to the step 2 and 3 until traverse listPt sequentially from the
very beginning to the end. Finally, add the final point to the NewPtArray.

STEP 5：Generate the minimum arc arrays (AddArcArray) according to the points of
NewPtArray. Traverse NewPtArray sequentially, and constitute a new arc with
the points that every couple of them whose reference isn’t 2 and ones between the
couple whose reference is 2 from NewPtArray. Then store these new arcs into
AddArcArray.

PROCEDURE 2：Add arcs that belongs to the minimum arc arrays

to the systemic arc set.
INPUT: The Minimum Arc Arrays

CArray<TArc*,TArc*> AddArcArray
The Systemic Arc Set
CArray<TArc*,TArc*> m_ArcArray
The Systemic Polygon Set
CArray<TPolygon*, TPolygon*> m_PolyArray

OUTPUT: The Systemic Arc Set modified m_ArcArray
The Systemic Polygon Set modified m_PolyArray

STEP 1：Traverse the minimum arc arrays (AddArcArray) sequentially one by one (TArc*
pArc). If the reference of each end of pArc isn’t 1, its Left-Polygon and Right-
Polygon must be searched for from m_ArcArray.

STEP 2：Search for pArc’s Left-Polygon and Right-Polygon.
First, get the topological arcs reference array (arrayArcRef) of the pArc’s tail
(m_pPt_End), and take them out except pArc and dangle arcs and closed arcs.
If there aren’t any, go to the step 1. If there is only one, go to the step 3 and
search for the Right-Polygon. If there is more than one, calculate the counter-
clockwise angles between the direction of the arc advancing and the segment
that starts at m_pPt_End and ends of the adjacent point that belongs to the
respective arc of them, then sort by size of the angles.

STEP 3：Search for pArc’s Right-Polygon.

 6

Take the arc out that has been found in step 2 whose value of the angle is the
minimal along the direction of its advancing, then treat it as the operations on
pArc in step 2, and find the arc out whose value of the angle is the minimal by
counter-clockwise along the direction of its advancing until reach to the arc
whose end is the head of pArc, which can find the pArc’s new Right-Polygon.
Then store the arcs that have been searched for sequentially into the arc arrays
of an object PolyRight. If the direction of the points that consist the arc is as
same as the direction of the arcs that surround PolyRight, the direction of the
arc is TURE, otherwise, FALSE. Then store the directions of the arcs into
directional arc-lists of PolyRight. If there aren’t any arcs that can accord with
the items, it is demonstrated that pArc hasn’t Right-Polygon, and set its
PolyRight null.

STEP 4：Search for pArc’s Left-Polygon.
Be similar to the step 3, but the difference is the arcs which have been found
out whose value of the angle is the maximum by counter-clockwise along the
direction of its advancing until reach to the arc whose end is the head of pArc.
Then store the arcs that have been searched for sequentially into the arc arrays
of another object PolyLeft. Accordingly, the directions of the arcs should be
stored into directional arc-lists of PolyLeft. If there aren’t any, it is also
demonstrated that pArc hasn’t Left-Polygon, and set its PolyLeft null.

STEP 5：First pArc is added into m_ArcArray, then its Right-Polygon (PolyRight) and
Left-Polygon (PolyLeft) are to be analyzed if has any.

To PolyRight, traverse the all arcs except pArc. At the same time, determine
their directions bArcDir and conduct the following process:
if(bArcDir == TRUE && pArc->m_pPolyRight != NULL)

 pArc->m_pPolyRight = PolyRight;
 else if(bArcDir == FALSE && pArc->m_pPolyLeft != NULL)

pArc->m_pPolyLeft = PolyRight;
To PolyLeft:
if(bArcDir == TRUE && pArc->m_pPolyLeft != NULL)

 pArc->m_pPolyLeft = PolyLeft;
 else if(bArcDir == FALSE && pArc->m_pPolyRight != NULL)

 7

pArc->m_pPolyRight = PolyLeft;
We can determine its rotating direction by calculating the area of the polygon.
If direction of PolyLeft is clockwise and of PolyRight is counter-clockwise,
they are the outer bounding polygons. Add PolyLeft and PolyRight into
m_PolyArray.

STEP 6：Go to the step 1, and search for Right-Polygon and Left-Polygon of the next arc
until traverse the minimum arc arrays sequentially from very beginning to the end.

● Deleting

Several complexions are classified in order that we can discuss each of their
algorithms when an arc is deleted according as whether the ends of the arc are closed or
not, how much is the reference of the each end of the arc and whether Right-Polygon
and Left-Polygon of the arc are in existence or not.
◆ Deleting an independent unclosed arc.

It is called as an independent unclosed arc if the references of the ends of an arc
are both 1. And so, deleting it can’t result in any changes on topological relationships
between topological features. The arc is deleted from systemic arc set directly.

◆ Deleting a Dangle Arc.

It is called as a dangle arc if the reference of one of the ends of an arc is 1 only,
and the other is no less than 3. If its reference of head (or tail) is 1, its reference and
topological arcs reference array of tail (or head) need modifying when the dangle arc is
deleted — Delete the arc from topological arcs reference array of tail (or head), and its
value of reference is subtracted 1. After being modified, if its reference turns into 2,
and moreover, there are two different arcs in its topological arcs reference array, they
need uniting together to one at here, and the point (tail or head) becomes a vertex on a
new arc.

◆ Deleting a closed arc.

It is called as a closed arc when the ends of an arc are the same one. The algorithm
of deleting a closed arc is similar to the one of deleting a dangle arc. Of cause, they
have difference, that is, its value of reference of the tail (or head) is subtracted 2 not 1

 8

from reference. Accordingly, the polygon surrounded by this arc should be deleted
from the systemic polygon set. Don’t need to modify the reference of the tail (or head)
if the closed arc is independent. At the same time, the operation on the closed arc
should be recorded in order to sustain or modify the parent-child relationships between
polygons after systemic submission.

◆ Deleting an arc whose ends are different nodes.

It is called as a generic arc whose ends are different nodes. When deleting it, first
the respective reference of its tail and its head is subtracted 1 severally, and delete it
from respective topological arcs reference array of the tail and the head. Then sustain
or modify the relationships between its Right-Polygon and Left-Polygon. Finally,
delete it from the systemic arc set directly.

● Moving wholly

Moving an arc wholly is that the all points that consist of it make the same
coordinate excursion synchronously. If both of its ends aren’t nodes, the operation must
be limited severely, that is, it is an independent arc that can be moved wholly. The
algorithm of the operation is similar to adding a new arc, and here don’t give
unnecessary details any longer.

■ Modify Points

Points can be classified into several categories according to their reference
— independent points, ends and vertices and nodes of the arcs, etc. Each category
will be discussed from before:

● Independent Points
The structure of independent points is very simple, and the relationships between

arcs and points, polygons and points can be calculated synchronously. So the access to
the topological relationships between independent points and other topological features
isn’t provided for the structure. Adding, deleting or modifying an independent point
can be calculated successively after operations.

 9

● Ends of Arcs
It is called as ends of an arc whose reference is 1, and they are regarded as a

special kind of nodes. There are three operations on an end, moving, deleting or uniting.
Particular discussions will be made latterly because the operation of uniting may result
from vertices or nodes.

◆ Moving

If the operation of moving the end of an arc can't result in intersections with other
topological features, only coordinates and indices of the end need modifying
accordingly. Otherwise, the operation will result in the systemic submission, which
causes the partial changes of topological relationships. The algorithm of the operation
is similar to adding a new arc, moving an arc wholly, etc. And here say more than is
needed.
◆ Deleting

The operation of deleting an end of an arc means deleting the arc indeed if there
are only two points (the head and the tail) in its point-list, which the algorithm of the
operation can consult the one of deleting a dangle arc. If there are no less than three
points in its point-list, the operation of deleting an end of an arc is that the end is
removed from its point-list and the adjacent point is regarded as a new end whose
reference is changed into 1.

● Vertices of Arcs

It is called as vertices of an arc whose reference is 2. And the ends of a closed arc
are regarded as a vertex too, but a difference should be made between them. There are
five operations on a vertex, adding, deleting, moving, splitting or uniting. The
algorithm of uniting will be discussed latterly.
◆ Adding

Adding a vertex has no effect on other topological features and relationships need
no change. Add the vertex to the point-list, and add its information to the grid index.

◆ Deleting

 10

After deleting a vertex, its next point will link the previous one directly. But such
an operation must be restricted in the condition that there are no less than four points in
point-list of the closed arc, otherwise the closed arc will turn into a to-and-fro segment
which makes no practical meaning.

Select a vertex that need deleting and delete it. If the line by which its next point
and the previous one will be linked directly will intersect with no other topological
features, the vertex will be deleted from its point-list. Otherwise, the operation will
cause the systemic submission, and its algorithm is similar to adding a new arc, moving
an arc wholly, etc. And here say more than is needed.
◆ Moving

After moving a vertex, if the two segments that pass through it intersect with no
other topological features, the relationships between them will sustain changelessness.
Modify the coordinates and the index of the vertex merely. Otherwise, the operation
will cause the systemic submission, and its algorithm is similar to deleting a vertex
above, which can consult the algorithm adding a new arc.
◆ Splitting

To a closed arc whose end reference is 2, splitting a vertex will result in an
independent arc from it. To a closed arc whose end reference is no less than 3, splitting
a vertex will result in two dangle arcs from it. At the same time, delete the Right-
Polygon and the Left-Polygon from the systemic polygon set.

To an independent unclosed arc or a dangle arc or a generic arc, splitting a vertex
will result in two arcs from it. If the Right-Polygon and the Left-Polygon of the old arc
are not null, they even should be united into one.

The operations, such as deleting a generic arc (which has been discussed above),
splitting a vertex, splitting a node (which will be discussed soon) and so on, maybe
induce union between the Right-Polygon and the Left-Polygon of the old arc that is
deleted or the vertex or the node is on.

As can be seen from Figure 2: Polygon I and Polygon II are united into one
because of splitting the vertex B into B and B’ (e.g. (1)), deleting the generic arc ABC
(e.g. (2)) or splitting the node A into A and A’ (e.g. (3)).

 11

（1） （2） （3）

 FIGURE 2 Splitting a Vertex, Deleting a Generic Arc or Splitting a Node Induce
Union.

Consider the following pseudo code example for union:

INPUT: TArc* pArc

The Systemic Polygon Set
CArray<TPolygon*, TPolygon*> m_PolyArray

OUTPUT: The Systemic Polygon Set modified m_PolyArray

STEP 1：Because the Right-Polygon and the Left-Polygon of an independent unclosed arc
or a dangle arc are both null, and ones of a closed arc are the same one but they
have opposite rotary directions, three complexions can be classified according as
whether the pointers of pPolyRight and pPolyLeft are null or not.
＊ If its Right-Polygon and Left-Polygon are both null, they do not need uniting.
＊ If neither of its Right-Polygon and Left-Polygon are null, and there is an outer

bounding polygon in them, they need uniting.
＊ If neither of its Right-Polygon and Left-Polygon are null, and neither of them

is an outer bounding polygon, they need uniting.
STEP 2：Process the second complexion:

Suppose the outer bounding polygon is marked with pPoly1, and the other is
marked with pPoly2, and the new polygon after union is marked with pPoly0.
Put the arcs that are in arc arrays of pPoly1 but except pArc and that are in arc
arrays of pPoly2 into the arc arrays of pPoly0 sequentially. PArc is replaced
sequentially by the arcs that are in arc arrays of pPoly2 but except pArc and
that are in arc arrays of pPoly1. At last, pPoly1 and pPoly2 that act as the

 12

Right-Polygon or Left-Polygon of all arcs are all replaced by pPoly0, and add it
to m_PolyArray as a new outer bounding polygon.
Process the third complexion:
Suppose pPolyLeft is marked with pPoly1, and pPolyRight is marked with
pPoly2, and the new polygon after union is marked with pPoly0. The algorithm
is similar to above, but the difference is that pPoly0 shouldn’t be marked with
an outer bounding polygon any more.

STEP 3：Delete pPoly1 and pPoly2 from m_PolyArray, and set the Left-Polygon and
Right-Polygon of pArc null.

Finish processing.

● Nodes of Arcs

It is called as nodes of an arc whose reference is no less than 3, which means that
all operations on a node will have an effect on arcs on which the node is acted as the
head or tail. And so, adding or deleting a node is restricted severely, even there is a
limit to move a node within compass in case the operation would cause the new
intersections. The operations on a node, such as splitting or uniting, can well be
executed. The algorithm of uniting will be discussed latterly.
◆ Moving

The algorithm of moving a node becomes very simple owing to the restriction
above. The relationships will sustain changelessness except that the coordinates and the
index of the node should be modified merely.

◆ Splitting

The operation on a node of splitting is that select the node that need splitting first,
then the direction of splitting, that is, which arc will be split from the node.

The corresponding algorithm would look like this:
Traverse the topological arcs reference array of the node (arrayArcRef)

sequentially, and find out the arc that will be split from the node, then remove it from
arrayArcRef. At the same time, generate a new point as its new head (or new tail)
within some cluster tolerance to substitute for the node. If the Right-Polygon and the
Left-Polygon of the old arc aren’t null, they even should be united into one. The

 13

algorithm can consult the one of splitting a vertex. Of cause, the reference of the node
(NumRef) should be modified accordingly. The node should be changed into a vertex
on condition that NumRef turns into 2 after the arc has been split from the node.

● Uniting Points

Particular and concentrative discussions are made from before because the
operation of uniting may result from ends, vertices or nodes. There are two restrictions
to unite two points: One is that the distance of the two points should be within a limited
range, and the other is that there aren’t any features between them, i.e. the segment that
connects the two points can’t intersect with other features.
◆ Uniting Two Ends

The head can be united with the tail on the same arc to shape a new polygon on
the condition that the number of the points that consist of the arc is no less than 4.
Delete the end of the arc first, and add the head to its point-list at the end. Then modify
information of its reference and topological arcs reference array.

As can be seen from the example (1) in Figure 3: The operation of uniting A and
B can result in a new polygon AFEDCBA.

The operation of uniting two ends on the different arcs can’t cause the changes of
topological relationships if another point is an end too. As can be seen from the
example (4) in Figure 3. There are four complexions to unite two ends, that is, head and
head, head and tail, tail and head, tail and tail, etc.

As can be seen from the example (2) in Figure 3: Be similar to example (4), the
operation of uniting two ends on the different arcs can’t cause the changes of
topological relationships.

As can be seen from the example (3) in Figure 3: The operation of uniting two
ends on the different arcs can cause the changes of topological relationships, which a
new polygon shapes. It can be seen that a new arc after being united is added to the
systemic arc set whose algorithm of the operation is similar to adding a new arc and the
PROCEDURE 2 above can well be the same with it.

 14

 FIGURE 3 Uniting Two Ends

◆ Uniting an End with a Vertex
As can be seen from the example (1) in Figure 4: The head (or tail) can be united

with a vertex on the same arc to shape a new polygon on the condition that the number
of the points from the head (or tail) to the vertex is no less than 4.

The corresponding algorithm would look like this:
INPUT: TArc* pArc

The End of the arc TPoint_tp* pPt1,
The Vertex of the arc TPoint_tp* pPt2,

OUTPUT: TArc* pArc
The New arc TArc* pArcNew，
The New Polygon TPolygon* pPoly

 15

STEP 1：If pPt1 is the head of pArc, traverse TPoint_tp* pPt in the point-list of pArc
sequentially from the tail one by one. Otherwise, traverse pPt from the head
instead. Here suppose the latter.

STEP 2：When traversing pPt in the point-list of pArc, if it is equal to pPt2, pArc
should be truncated from pPt2, and set it as the tail of pArc. At the same time,
a new arc is generated named pArcNew, and pPt2 is added to its point-list as
its head. Of cause, its topological arcs reference array should be modified in
time. If pPt isn’t equal to pPt2, determine whether pArcNew has been
generated or not. If it doesn’t exist, that means pPt2 hasn’t been found out yet,
and go on traversing continuously. If it does exist, pPt should be added to the
point-list of pArcNew as a temporary tail. Then remove it from the point-list
of pArc.

STEP 3：Finish traversing. Generate the new independent polygon by arcs of pArcNew ,
and the new arcs and new polygon should be added to the systemic arc set and
systemic polygon set.

Seen from the example (1) in Figure 4: The end A is united with the vertex C,
and the polygon CDEFC is generated, which has been cut off the old arc BCDEFA.

FIGURE 4 Uniting an End with a Vertex

As can be seen from the example (2) and (3) in Figure 4 above: To unite the head
(or tail) with a vertex on another different arc, two complexions are offered by the
reference of the tail (or head) of the arc which the head (or tail) is on — an independent
arc and a dangle arc. Seen from the former: Arc BCDEFA is truncated from F (To a
closed arc BCDEFAB, it needn’t truncating from F, but it need sorting again from the
vertex F as the new end). Remove the point H from the point-list of GH, and add the

 16

point F to it. At this time, the vertex has turned into a node, and its reference and
topological arcs reference array should be modified accordingly. Seen from the latter:
Except the process above, probably a new polygon has been generated because of
union, which can be regarded that the dangle arc that has been united to the vertex is
added to the systemic arc set, and the algorithm can consult the procedure 2 of adding
an arc.

◆ Uniting an End with a Node

The two complexions are divided into by the reference of the other end of the arc
that the head (or tail) is on — an independent arc (the first example in Figure 5) and a
dangle arc (the second and the third examples in Figure 5).

To the former, remove the end from the point-list of the independent arc, and add
the node to it. At the same time, its reference and topological arcs reference array
should be modified accordingly.

To the latter, two complexions are also offered according as whether the node is
the other end of the arc that the united end is on. If the node is, the operation of uniting
the end with it will result in a new dangle polygon when there are no less than 4 points
in the point-list of the dangle arc. Except the process of the former, the new dangle
polygon will be added to the systemic polygon set, which will be recorded as an
operation recorder in order to create the parent-child relationships between polygons
after the systemic submission. If the node isn’t the other end of the arc, the operation of
uniting the end with it will result in a new adjacent polygon when there are no less than
3 points in the point-list of the dangle arc. The algorithm can also consult the procedure
2 of adding an arc.

 17

FIGURE 5 Uniting an End with a Node

◆ Uniting Two Vertices
There are two complexions according as whether the vertices are on the same arc.

One is that the two vertices are on the same arc; the other is that the two vertices are on
the different arcs.

To the former, there are at least two points between them when the two vertices
can be united. If the arc is an independent one, seen from the first example in Figure 6,
there is gong to be a new dangle polygon to be generated between the two vertices after
their union. And the remainder will be truncated into two new dangle arcs. If the arc is
a closed one, seen from the second example in Figure 6, except the process of the
former, another new polygon will be generated because the ends of the two new dangle
arcs are the same one.

FIGURE 6 Uniting Two Vertices on the Same Arc

Consider the following pseudo code example:
INPUT: TArc* pArc

the point-list of pArc listPt， nSize
TPoint_tp* pPt1, pPt2 (the vertices that need uniting)

OUTPUT: TArc* pArc
The New arc1 TArc* pArcNew1
The New arc2 TArc* pArcNew2
The New polygon1 TPolygon* pPoly1

 18

The New Polygon2 TPolygon* pPoly2

STEP 1：int nPos1 = 0; int nPos2 = 0;
 nPos1 and nPos2 are the orders (i) of the position of pPt1 and pPt2 in the point-

list of pArc.
STEP 2：Traverse pPt in listPt from its head.

for (i = 0; i < nSize; i++)
pPt = listPt.GetAt(i);
if (pPt == pPt1)

 nPos1 = i;
else if(pPt == pPt2)

 nPos2 = i;
 Finish traversing.

STEP 3：Judge the absolute value of the difference between nPos1 and nPos2.
if (ABS(nPos1 – nPos2) < 2)

 return;
else
{

int nPosMin = min(nPos1,nPos2);
int nPosMax = max(nPos1,nPos2);

}
 Traverse pPt in listPt from its head again. Keep the points that range the orders

from 0 to nPosMin in listPt of pArc. And add the points that range the orders
from nPosMin to nPosMax into pArcNew1. Then unite its head with its tail,
so pPoly1 will be generated. Add the points that range the orders from
nPosMax to (nSize – 1) into pArcNew2. At last, add pArcNew1 to the
systemic arc set, and add pPoly1 to systemic polygon set.

STEP 4： If the head of pArc is the tail of pArcNew2, which means that the old pArc is
a closed arc. So pPoly2 is generated with pArc and pArcNew2 surrounding.
Then add pPoly2 to systemic polygon set too.

STEP 5： Finish processing.

 19

To the latter, the categories of the arcs should be identified first according to the
references of their ends.
① An independent unclosed arc whose reference of ends are both 1.
② A closed arc whose ends are the same one and the reference is 2.
③ A dangle arc whose reference of one of its ends is 1, and the other is no less

than 3.
④ A generic arc whose reference of its both ends are no less than 3.
Then, the following diagram shows how these complexions work together:

The arc which pPt1 is on The arc which pPt2 is on
No. Reference of its

head
Reference of its

tail
Reference of its

head
Reference of its

tail

1 1 1 1 1

2 1 1 2 2

3 1 1 1 >= 3

4 1 1 >= 3 >= 3

5 2 2 2 2

6 2 2 1 >= 3

7 2 2 >= 3 >= 3

8 1 >= 3 1 >= 3

9 1 >= 3 >= 3 >= 3

10 >= 3 >= 3 >= 3 >= 3

 TABLE 1 Uniting Two Vertices on Different Arcs

 20

The vertex on an independent unclosed arc will turn into a node when united with a
vertex on another arc. The independent unclosed arc will be split into two new arcs from it,
and its reference and topological arcs reference array should be modified accordingly, such
as the complexions of number 1, 2, 3, 4.

After united with a vertex on another arc, the vertex on the closed arc will act as the
new end (Because the head and the tail are the same one.) of this closed arc, and its
reference and topological arcs reference array should be modified accordingly. Then sort all
points in the point-list of the old closed arc by sequence again from the new end, such as the
complexions of number 2, 5, 6, 7.

The vertex on a dangle arc will also turn into a node when united with a vertex on an
independent unclosed arc or a closed arc. The dangle arc will be split into two new arcs
from it, and its reference and topological arcs reference array should be modified
accordingly, such as the complexions of number 3 and 6. Especially, a new polygon will be
probably generated when united with a vertex on a generic arc or another dangle arc, such as
the complexions of number 8 and 9.

As can be seen from the example (1) and (2) in Figure 7: After vertex E has been
united with vertex F, the new arc GE and FB need adding to the systemic arc set in the first
example, and so does GE in the second example. The algorithm can consult the procedure 2
of adding an arc.

The vertex on a generic arc will turn into a node too when united with a vertex on an
independent unclosed arc or a closed arc or a dangle arc. The generic arc will be split into
two new arcs from it, and its reference and topological arcs reference array should be
modified accordingly, such as the complexions of number 4, 7, 9. When united with a vertex
on another generic arc, a new polygon will be perhaps generated, such as the complexions
of number 10.

Seen from the example (3) in Figure 7: After vertex F has been united with vertex E,
the arc BFC is split into two arcs, the new arc BF and FC. They are regarded as new added
arcs, and search their Right-Polygons and Left-Polygons according to the algorithm of the
procedure 2 of adding an arc showed above.

 21

FIGURE 7 Uniting Two Vertices on Different Arcs

◆ Uniting a Vertex with a Node
There are two complexions according as whether the vertex and the node are on

the same arc. One is that they are on the same arc; the other is that they are on the
different arcs.

To the former, the algorithm is similar to uniting an end with a vertex on the same
arc. And to the latter, the algorithm is similar to uniting an end with a vertex on the
different arcs.

◆ Uniting Two Nodes

Two complexions can be classified also according as whether the two nodes are
on the same arc. One is that they are on the same arc, that is, the head is united with the
tail on the same arc, whose algorithm is similar to uniting two ends on the same arc.
The other is that they are on the different arcs whose algorithm is similar to uniting two
vertices on the different arcs.

■ Modify Parent-child Relationships between Polygons Because of Topological

Changes
A tree-structure will be established during the process of static topology in order to

describe the parent-child relationships between polygons, that is, inclusive relationships
between polygons. All operations that perhaps cause alteration in parent-child relationships
between polygons have been recorded in a special structure during every topological change,
such as operations that cause polygon adding, deleting and moving, boundary changing, etc.
After topological alterations, parent-child relationships between polygons should be
modified accordingly; whose algorithm is that add or delete nodes in the tree-structure. Here
don’t give unnecessary details.

 22

The algorithms and the processes of dynamical topological changes described above
have been discussed particularly in terms of respective operation mentioned in the
topological alteration-processing model. And so relevant dynamical topological
relationships have been established already. The algorithm of moving an arc wholly, moving
an end or a vertex, deleting a vertex, uniting points, etc. is similar to the one of adding a new
arc. And the algorithm of splitting a vertex or a node is the same as the one of deleting an
arc.

Research by Experiments

An independent experimental system has been designed in order to validate the data
structure and algorithm of establishing dynamical topological relationships. It provides the
functions of INPUT or IMPORT, TOPOLOGICAL FEATURES CHECK-UP,
TOPOLOGICAL COHERENCE CHECK-UP, EDIT GEOGRAPHIC OBJECTS
(including points, lines and polygons ADDING, DELETING and MOVING etc.),
ESTABLISH STATIC TOPOLOGICAL RELATIONSHIPS, EDIT TOPOLOGICAL
FEATURES (including ends, vertices, nodes, arcs and polygons ADDING, DELETING,
MOVING, SPLITTING and UNITING etc.), ESTABLISH DYNAMICAL
TOPOLOGICAL RELATIONSHIPS and OUTPUT or EXPORT. A sound conclusion
can be drawn that the topological alteration-processing model is valid and preponderant
compared with the models of static topology by the same data.

Conclusions

The data structure and algorithms of establishing dynamical topological relationships
and even the topological alteration-processing model have been discussed in the thesis.
Because land subdivisions have been split or united more frequently in land use
management, the algorithms of adding or deleting an arc, splitting or uniting points have
been introduced emphatically and detailedly. Finally the model is proved to be valid,
practical and useful by typical examples of Land Use Management System of SHANXI
province.

Of cause, if the model can realize the temporal management and modification of
figures and attributes well and truly, the needs will be met further in statistics, query,

 23

comparison and analysis, etc. in land use management. The research needs a further
advancement.

References

1.Langran.G, Time in GISs Taylar & Franeis Ltd, 1992,

2.Egenhofer M. J. and Franzosa, D. R., Point-Set Topological Spatial Relations[J],

International Journal of Geographical Information System, 1991, 5(2): 161-174

3. Robert.G.Cromley, Digital Cartography, Prentice Hall, Englewood Cliffs, New Jersey
07632

4. Wu Hehai, Cartographic Database System, Beijing, Serving and Mapping Press, 1991

5.Wu Xincai,, the Basic Technology and Developments of GIS, The Science of the Globe,

Journal of China University of Geosciences, 1998,7, 23-4

6.Xiao Lebing, Zhong Ershun, Liu Jiyuan, Song Guanfu, Oriented Objects Design and
Implementation of the Data Model of Holistic GIS, Beijing, http://www.gischina.com

 24

http://www.gischina.com/

	The Study on Dynamic Topology Based On Land Use Management
	I Data Process Model of Dynamical Topology
	II Data Structure of Dynamical Topology
	III Algorithms of Dynamical Topology
	To the latter, the categories of the arcs should be identified first according to the references of their ends.
	
	
	References

